




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省高考沖刺模擬數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.2.某個(gè)命題與自然數(shù)有關(guān),且已證得“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”.現(xiàn)已知當(dāng)時(shí),該命題不成立,那么()A.當(dāng)時(shí),該命題不成立 B.當(dāng)時(shí),該命題成立C.當(dāng)時(shí),該命題不成立 D.當(dāng)時(shí),該命題成立3.的展開(kāi)式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.634.已知拋物線(xiàn):()的焦點(diǎn)為,為該拋物線(xiàn)上一點(diǎn),以為圓心的圓與的準(zhǔn)線(xiàn)相切于點(diǎn),,則拋物線(xiàn)方程為()A. B. C. D.5.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.6.直三棱柱中,,,則直線(xiàn)與所成的角的余弦值為()A. B. C. D.7.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.8.若實(shí)數(shù)x,y滿(mǎn)足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.09.已知,則()A. B. C. D.10.設(shè),集合,則()A. B. C. D.11.已知曲線(xiàn),動(dòng)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作曲線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為,則直線(xiàn)截圓所得弦長(zhǎng)為()A. B.2 C.4 D.12.已知雙曲線(xiàn)(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線(xiàn)焦距的最小值為()A.8 B.16 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.在中,為定長(zhǎng),,若的面積的最大值為,則邊的長(zhǎng)為_(kāi)___________.15.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國(guó)西周時(shí)期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過(guò)“勾3股4弦5”的問(wèn)題.現(xiàn)有滿(mǎn)足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿(mǎn)足勾股定理,則______.16.如圖,為測(cè)量出高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得.已知山高,則山高_(dá)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某公園有一塊邊長(zhǎng)為3百米的正三角形空地,擬將它分割成面積相等的三個(gè)區(qū)域,用來(lái)種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點(diǎn)D,E分別在邊,上);再取的中點(diǎn)M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點(diǎn)D的位置,使兩條直道的長(zhǎng)度之和最小,并求出最小值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為.(i)求;(ii)若,求整數(shù)的最大值.19.(12分)在銳角中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.20.(12分)已知,點(diǎn)分別為橢圓的左、右頂點(diǎn),直線(xiàn)交于另一點(diǎn)為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),總使得為銳角,求直線(xiàn)斜率的取值范圍.21.(12分)某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線(xiàn)上零件的質(zhì)量情況,從生產(chǎn)線(xiàn)上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率.現(xiàn)對(duì)生產(chǎn)線(xiàn)上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè).企業(yè)在交付買(mǎi)家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為元.若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買(mǎi)家手中,企業(yè)要向買(mǎi)家對(duì)每個(gè)二等品支付元的賠償費(fèi)用.現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說(shuō)明理由.22.(10分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)經(jīng)過(guò)點(diǎn)且傾斜角為.(1)求曲線(xiàn)的極坐標(biāo)方程和直線(xiàn)的參數(shù)方程;(2)已知直線(xiàn)與曲線(xiàn)交于,滿(mǎn)足為的中點(diǎn),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類(lèi)型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題2、C【解析】
寫(xiě)出命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【詳解】由逆否命題可知,命題“假設(shè)時(shí)該命題成立,則時(shí)該命題也成立”的逆否命題為“假設(shè)當(dāng)時(shí)該命題不成立,則當(dāng)時(shí)該命題也不成立”,由于當(dāng)時(shí),該命題不成立,則當(dāng)時(shí),該命題也不成立,故選:C.【點(diǎn)睛】本題考查逆否命題與原命題等價(jià)性的應(yīng)用,解題時(shí)要寫(xiě)出原命題的逆否命題,結(jié)合逆否命題的等價(jià)性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.3、B【解析】
根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開(kāi)式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類(lèi)討論和應(yīng)用意識(shí).4、C【解析】
根據(jù)拋物線(xiàn)方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線(xiàn)上,所以,由于以為圓心的圓與的準(zhǔn)線(xiàn)相切于點(diǎn),根據(jù)拋物線(xiàn)的定義可知,、軸,且.由于,所以直線(xiàn)的傾斜角為,所以,解得,或(由于,故舍去).所以?huà)佄锞€(xiàn)的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線(xiàn)的定義,考查直線(xiàn)的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5、C【解析】
函數(shù)的定義域應(yīng)滿(mǎn)足故選C.6、A【解析】
設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補(bǔ)角)為直線(xiàn)與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點(diǎn)睛】本題考查異面直線(xiàn)所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.7、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問(wèn)題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來(lái)表示和是本題的關(guān)鍵,屬于中檔題.8、C【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿(mǎn)足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C【點(diǎn)睛】求線(xiàn)性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線(xiàn)過(guò)可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最小;當(dāng)時(shí),直線(xiàn)過(guò)可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.9、C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).10、B【解析】
先化簡(jiǎn)集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算推理能力.11、C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線(xiàn)斜率,進(jìn)而得到切線(xiàn)方程,將點(diǎn)坐標(biāo)代入切線(xiàn)方程,抽象出直線(xiàn)方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線(xiàn)上,所以直線(xiàn)的方程為,恒過(guò)定點(diǎn),即直線(xiàn)過(guò)圓心,則直線(xiàn)截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線(xiàn)與圓位置關(guān)系、直線(xiàn)與拋物線(xiàn)位置關(guān)系,拋物線(xiàn)兩切點(diǎn)所在直線(xiàn)求解是解題的關(guān)鍵,屬于中檔題.12、D【解析】
根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線(xiàn)焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線(xiàn)半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線(xiàn)的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線(xiàn)與基本不等式綜合應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對(duì)等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開(kāi)式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、【解析】
設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.15、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.16、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),.,.(2)當(dāng)百米時(shí),兩條直道的長(zhǎng)度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡(jiǎn)整理即得;同理,化簡(jiǎn)整理即得.(2)由(1)和基本不等式,計(jì)算即得.【詳解】解:(1),是邊長(zhǎng)為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長(zhǎng)度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因?yàn)镸為的中點(diǎn),所以.由①②,得,所以,所以.所以,直道長(zhǎng)度關(guān)于x的函數(shù)關(guān)系式為,.法2:因?yàn)樵谥?,,所?所以,直道長(zhǎng)度關(guān)于x的函數(shù)關(guān)系式為,.在中,因?yàn)镸為的中點(diǎn),所以.所以.所以,直道長(zhǎng)度關(guān)于x的函數(shù)關(guān)系式為,.(2)由(1)得,兩條直道的長(zhǎng)度之和為(當(dāng)且僅當(dāng)即時(shí)取“”).故當(dāng)百米時(shí),兩條直道的長(zhǎng)度之和取得最小值百米.【點(diǎn)睛】本題考查了余弦定理和基本不等式,第一問(wèn)也可以利用三角形中的向量關(guān)系進(jìn)行求解,屬于中檔題.18、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對(duì)分類(lèi)討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問(wèn)題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時(shí),,即在上增;當(dāng)時(shí),,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時(shí),,在單調(diào)遞增,所以滿(mǎn)足題意;當(dāng)時(shí),,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類(lèi)討論思想,屬于中檔題.19、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)?,所以,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類(lèi)問(wèn)題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識(shí),同時(shí)考查了學(xué)生的基本運(yùn)算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點(diǎn)坐標(biāo),即可求得橢圓的方程;(Ⅱ)設(shè)直線(xiàn),代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線(xiàn)斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線(xiàn)的斜率存在,可設(shè)方程為設(shè)由得由直線(xiàn)與橢圓有兩個(gè)不同的交點(diǎn)則即得又為銳角則即②由①②得或故直線(xiàn)斜率可取值范圍是【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查直線(xiàn)與橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,韋達(dá)定理,考查計(jì)算能力,屬于中檔題.21、(1);(2)分布列見(jiàn)詳解,期望為;(3)余下所有零件不用檢驗(yàn),理由見(jiàn)詳解.【解析】
(1)計(jì)算的頻率,并且與進(jìn)行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計(jì)算方法,可得結(jié)果.(2)計(jì)算位于之外的零件中隨機(jī)抽取個(gè)的總數(shù),寫(xiě)出所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出分布列,計(jì)算期望,可得結(jié)果.(3)計(jì)算整箱的費(fèi)用,根據(jù)余下零件個(gè)數(shù)服從二項(xiàng)分布,可得余下零件個(gè)數(shù)的期
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項(xiàng)目管理中的法律法規(guī)考題試題及答案
- 項(xiàng)目管理戰(zhàn)略分析試題及答案
- 2025年公司財(cái)務(wù)治理新趨勢(shì)試題及答案
- 微生物檢測(cè)新技術(shù)的探索試題及答案
- 2024年項(xiàng)目管理考題預(yù)測(cè)試題及答案
- 證券從業(yè)資格證考試制度理解試題及答案
- 重要致病菌的特征識(shí)別試題及答案
- 放射性金屬礦的開(kāi)采對(duì)土壤質(zhì)量的影響考核試卷
- 生態(tài)環(huán)境監(jiān)測(cè)在農(nóng)業(yè)生態(tài)環(huán)境保護(hù)中的重要性考核試卷
- 新冠疫情下微生物檢測(cè)的策略與實(shí)施試題及答案
- 眼視光器械學(xué)-第五章-眼底檢測(cè)儀器課件
- 有毒動(dòng)植物食物中毒及其預(yù)防-河豚魚(yú)中毒(食品安全課件)
- 某裝飾裝修工程施工應(yīng)急處置預(yù)案
- 第四章-數(shù)據(jù)交換技術(shù)課件
- 塞外山城張家口
- 日光溫室大棚承包合同
- 電子商務(wù)案例分析13例 - 電子商務(wù)案例
- 多發(fā)傷及復(fù)合傷的搶救處理流程
- 2023年鄭州科技學(xué)院?jiǎn)握忻嬖囶}庫(kù)及答案解析
- 《表觀遺傳》教學(xué)設(shè)計(jì)
- 自動(dòng)跟隨智能小車(chē)的定位與跟隨系統(tǒng)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論