![河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view14/M02/19/07/wKhkGWdm-YyAV78hAAHerTWIC_0385.jpg)
![河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view14/M02/19/07/wKhkGWdm-YyAV78hAAHerTWIC_03852.jpg)
![河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view14/M02/19/07/wKhkGWdm-YyAV78hAAHerTWIC_03853.jpg)
![河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view14/M02/19/07/wKhkGWdm-YyAV78hAAHerTWIC_03854.jpg)
![河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view14/M02/19/07/wKhkGWdm-YyAV78hAAHerTWIC_03855.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省安陽市林州一中2025屆高三第三次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值2.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.3.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.5.已知集合,集合,則A. B.或C. D.6.在中,為邊上的中點,且,則()A. B. C. D.7.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.8.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.9.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.10.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.211.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.112.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.14.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____15.已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為_______.16.實數(shù),滿足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時,判斷是否是函數(shù)的極值點,并說明理由;(2)當(dāng)時,不等式恒成立,求整數(shù)的最小值.18.(12分)已知拋物線E:y2=2px(p>0),焦點F到準(zhǔn)線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.19.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標(biāo)準(zhǔn)方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標(biāo).20.(12分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標(biāo),國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補助標(biāo)準(zhǔn).提高了各項報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實付費用(報銷后個人應(yīng)承擔(dān)部分)的分布列與期望.21.(12分)在極坐標(biāo)系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點,且,求r的值.22.(10分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因為,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).2、C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).3、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.4、B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡,即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.5、C【解析】
由可得,解得或,所以或,又,所以,故選C.6、A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎(chǔ)題.7、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.8、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題9、A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當(dāng)k=0時,解,當(dāng)k=-1時,,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.10、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.11、B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.12、A【解析】
根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當(dāng)時,,故B錯誤;對于C,,故C錯誤;對于D,當(dāng)時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、16.【解析】由題意可知拋物線的焦點,準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時取等號.故答案為16點睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運算化繁為簡.“看到準(zhǔn)線想焦點,看到焦點想準(zhǔn)線”,這是解決拋物線焦點弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.14、2025【解析】
利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.15、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經(jīng)過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進而求離心率,屬于基礎(chǔ)題.16、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進而確定出C點坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標(biāo)函數(shù)在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標(biāo)為.等價于點與原點連線的斜率,所以當(dāng)點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關(guān)線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時,.令,則當(dāng)時,.即在內(nèi)為減函數(shù),且∴當(dāng)時,;當(dāng)時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當(dāng)時,不等式成立,即.即證令則∴當(dāng)時,;當(dāng)時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時,.即當(dāng)時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題18、(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點坐標(biāo)表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據(jù)焦點和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達定理整體代入,拋物線中需要考慮設(shè)點坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.19、(1);(2)證明見解析,.【解析】
(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設(shè),,聯(lián)立方程組利用韋達定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標(biāo)準(zhǔn)方程是.(2)當(dāng)直線的斜率為0時,直線與直線關(guān)于軸對稱,則直線與直線的斜率之和為零,與題設(shè)條件矛盾,故直線的斜率不為0.設(shè),,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線過定點問題,計算出是解題的關(guān)鍵,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.20、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美容院雙十一活動方案策劃
- 雙11小活動策劃方案
- 現(xiàn)服科技發(fā)展與創(chuàng)新人才培訓(xùn)模式探討
- 匯報技巧構(gòu)建高效商業(yè)匯報的核心要素
- 國慶節(jié)活動方案披薩
- 7 角的初步認識 第二課時(說課稿)-2023-2024學(xué)年二年級下冊數(shù)學(xué)蘇教版001
- Unit 11 Chinese festivals(period 1)(說課稿)-2023-2024學(xué)年滬教牛津版(深圳用)英語五年級下冊001
- 16 家鄉(xiāng)新變化(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治二年級上冊
- 2023四年級數(shù)學(xué)上冊 二 加減法的關(guān)系和加法運算律第5課時說課稿 西師大版
- 2023九年級物理下冊 第十一章 物理學(xué)與能源技術(shù)11.3能源說課稿 (新版)教科版
- 統(tǒng)編版八年級下冊語文第三單元名著導(dǎo)讀《經(jīng)典常談》閱讀指導(dǎo) 學(xué)案(含練習(xí)題及答案)
- 風(fēng)光儲儲能項目PCS艙、電池艙吊裝方案
- 《志愿軍-存亡之戰(zhàn)》觀后感小學(xué)生
- 統(tǒng)編小學(xué)《道德與法治》三年級上下冊教材的解讀
- 人教版(2024)英語七年級上冊單詞表
- 產(chǎn)業(yè)鏈競爭關(guān)聯(lián)度
- TTJSFB 002-2024 綠色融資租賃項目評價指南
- 涵洞施工鋼筋混凝土圓管涵
- 高考地理一輪復(fù)習(xí)學(xué)案+區(qū)域地理填圖+亞洲
- 全新車位轉(zhuǎn)讓協(xié)議模板下載(2024版)
- 高中數(shù)學(xué)必修一試卷及答案
評論
0/150
提交評論