![昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view9/M01/0B/0E/wKhkGWdmUuGAWsuTAAKPjJFYJLM577.jpg)
![昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view9/M01/0B/0E/wKhkGWdmUuGAWsuTAAKPjJFYJLM5772.jpg)
![昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view9/M01/0B/0E/wKhkGWdmUuGAWsuTAAKPjJFYJLM5773.jpg)
![昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view9/M01/0B/0E/wKhkGWdmUuGAWsuTAAKPjJFYJLM5774.jpg)
![昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view9/M01/0B/0E/wKhkGWdmUuGAWsuTAAKPjJFYJLM5775.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁,共3頁昆明鐵道職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析思維與方法》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、當(dāng)分析一個(gè)在線教育平臺(tái)的學(xué)生學(xué)習(xí)行為數(shù)據(jù),比如學(xué)習(xí)時(shí)間、課程完成率、作業(yè)得分等,以評(píng)估教學(xué)質(zhì)量和學(xué)生的學(xué)習(xí)效果。由于學(xué)生的個(gè)體差異較大,為了進(jìn)行公平和準(zhǔn)確的分析,以下哪種處理方式可能是必要的?()A.對(duì)學(xué)生進(jìn)行分組比較B.只關(guān)注優(yōu)秀學(xué)生的數(shù)據(jù)C.忽略學(xué)習(xí)困難學(xué)生的數(shù)據(jù)D.不做任何特殊處理2、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠(yuǎn)多于其他類別),以下哪種處理方法可能會(huì)提高模型性能?()A.過采樣B.欠采樣C.生成對(duì)抗網(wǎng)絡(luò)D.以上都是3、在聚類分析中,以下關(guān)于K-Means算法的描述,不正確的是:()A.算法需要事先指定聚類的個(gè)數(shù)KB.初始聚類中心的選擇對(duì)最終結(jié)果影響不大C.算法通過不斷迭代來優(yōu)化聚類結(jié)果D.適用于處理大規(guī)模數(shù)據(jù)4、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來值是一個(gè)重要的應(yīng)用。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來一段時(shí)間的價(jià)格走勢(shì),以下哪種方法可能較為有效?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)5、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們面對(duì)一個(gè)包含大量缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄的數(shù)據(jù)集,以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過刪除包含過多缺失值的行或列來處理缺失數(shù)據(jù),但這可能導(dǎo)致信息丟失B.對(duì)于錯(cuò)誤數(shù)據(jù),可以通過與其他可靠數(shù)據(jù)源進(jìn)行對(duì)比或基于數(shù)據(jù)的邏輯關(guān)系進(jìn)行修正C.重復(fù)記錄可以直接保留,因?yàn)樗鼈儾粫?huì)對(duì)數(shù)據(jù)分析結(jié)果產(chǎn)生太大影響D.運(yùn)用數(shù)據(jù)填充技術(shù),如使用均值、中位數(shù)或眾數(shù)來填充缺失值,但需要謹(jǐn)慎選擇填充方法6、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評(píng)估指標(biāo)來衡量模型的性能。假設(shè)要評(píng)估一個(gè)分類模型的效果,以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類樣本被正確預(yù)測(cè)的比例,適用于關(guān)注正類樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評(píng)估指標(biāo),但計(jì)算較為復(fù)雜D.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類型和應(yīng)用場(chǎng)景無關(guān)7、數(shù)據(jù)分析中的文本分類任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類。假設(shè)要對(duì)新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等類別,文本內(nèi)容多樣且語言表達(dá)復(fù)雜。以下哪種方法在處理這種多類別文本分類問題時(shí)更能提高分類準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類算法C.依賴人工制定的分類規(guī)則D.隨機(jī)分類8、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績,以下關(guān)于假設(shè)檢驗(yàn)的描述,正確的是:()A.不設(shè)定原假設(shè)和備擇假設(shè),直接進(jìn)行檢驗(yàn)B.忽略檢驗(yàn)的顯著性水平,隨意得出結(jié)論C.正確設(shè)定原假設(shè)和備擇假設(shè),選擇合適的檢驗(yàn)統(tǒng)計(jì)量,根據(jù)顯著性水平和樣本數(shù)據(jù)進(jìn)行推斷,并解釋檢驗(yàn)結(jié)果的實(shí)際意義D.只關(guān)注檢驗(yàn)結(jié)果是否拒絕原假設(shè),不考慮效應(yīng)大小和實(shí)際應(yīng)用價(jià)值9、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對(duì)一個(gè)包含消費(fèi)者購買行為的大型數(shù)據(jù)集,包括購買金額、購買頻率、購買商品類別等多個(gè)變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計(jì)算各個(gè)變量的均值、中位數(shù)和標(biāo)準(zhǔn)差等統(tǒng)計(jì)量B.進(jìn)行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點(diǎn)圖來觀察變量的分布和關(guān)系D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行簡(jiǎn)單觀察10、在數(shù)據(jù)分析的過程中,數(shù)據(jù)的預(yù)處理和特征工程可能會(huì)占用大量時(shí)間。假設(shè)你面臨時(shí)間緊迫的情況,以下關(guān)于時(shí)間分配的策略,哪一項(xiàng)是最明智的?()A.跳過預(yù)處理和特征工程,直接進(jìn)行建模分析B.減少數(shù)據(jù)清洗的工作,重點(diǎn)放在特征工程上C.合理分配時(shí)間,確保預(yù)處理和特征工程的質(zhì)量,以提高模型性能D.把大部分時(shí)間花在模型選擇和調(diào)優(yōu)上,忽略數(shù)據(jù)準(zhǔn)備11、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。在進(jìn)行雙側(cè)檢驗(yàn)時(shí),如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立12、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場(chǎng)趨勢(shì)的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無需進(jìn)行驗(yàn)證D.不同來源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合13、數(shù)據(jù)分析中的數(shù)據(jù)可視化不僅要美觀,還要具有交互性。假設(shè)要構(gòu)建一個(gè)交互式的數(shù)據(jù)可視化報(bào)表,允許用戶根據(jù)自己的需求篩選和查看數(shù)據(jù),以下哪種工具可能是最合適的?()A.ExcelB.TableauC.PowerBID.matplotlib14、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。假設(shè)一家醫(yī)院想要分析患者的病歷數(shù)據(jù),以提高醫(yī)療服務(wù)質(zhì)量。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以預(yù)測(cè)疾病的發(fā)生風(fēng)險(xiǎn),提前采取預(yù)防措施B.分析治療效果,優(yōu)化治療方案C.醫(yī)療數(shù)據(jù)的隱私保護(hù)不重要,只要能得到有價(jià)值的分析結(jié)果就行D.幫助醫(yī)院進(jìn)行資源規(guī)劃和管理,提高運(yùn)營效率15、在建立回歸模型時(shí),如果數(shù)據(jù)存在異方差性,以下哪種方法可以解決這個(gè)問題?()A.加權(quán)最小二乘法B.嶺回歸C.套索回歸D.以上都不是16、在數(shù)據(jù)分析的預(yù)測(cè)模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹集成模型,如隨機(jī)森林B.神經(jīng)網(wǎng)絡(luò),具有強(qiáng)大的擬合能力C.支持向量回歸,處理小樣本D.堅(jiān)持使用簡(jiǎn)單的線性模型17、在數(shù)據(jù)挖掘中,若要對(duì)數(shù)據(jù)進(jìn)行分類,以下哪種算法對(duì)噪聲和缺失值具有較好的容忍性?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林18、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對(duì)模型有用的特征。假設(shè)我們要對(duì)一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過提取圖像的顏色、形狀、紋理等特征來表示圖像B.特征選擇可以去除冗余和無關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對(duì)圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對(duì)特征進(jìn)行預(yù)處理19、在數(shù)據(jù)庫中,索引可以提高數(shù)據(jù)的查詢效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢條件的字段C.唯一性較差的字段D.頻繁更新的字段20、在進(jìn)行數(shù)據(jù)聚類時(shí),需要確定合適的聚類數(shù)量。假設(shè)我們使用K-Means算法進(jìn)行聚類,以下哪種方法可以幫助我們選擇最優(yōu)的K值?()A.肘部法則B.輪廓系數(shù)C.均方誤差D.以上都是21、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶購買行為與促銷活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營銷策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化22、在進(jìn)行數(shù)據(jù)探索性分析時(shí),以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項(xiàng)是最常用的?()A.計(jì)算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對(duì)數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查23、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對(duì)于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測(cè)房價(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡(jiǎn)化模型24、在進(jìn)行數(shù)據(jù)分析時(shí),如果想要研究兩個(gè)變量之間是否存在因果關(guān)系,以下哪種方法比較合適?()A.相關(guān)性分析B.回歸分析C.方差分析D.聚類分析25、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究某電商平臺(tái)用戶的購買行為與年齡、性別、地域等因素的關(guān)系,以下哪種分析方法最為合適?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.回歸分析D.因子分析26、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠準(zhǔn)確地描述數(shù)據(jù)特征。假設(shè)我們正在分析一組學(xué)生的考試成績。以下關(guān)于統(tǒng)計(jì)指標(biāo)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.平均數(shù)能夠反映數(shù)據(jù)的集中趨勢(shì),但容易受到極端值的影響B(tài).中位數(shù)不受極端值的影響,能更穩(wěn)健地表示數(shù)據(jù)的中心位置C.標(biāo)準(zhǔn)差越大,說明數(shù)據(jù)的離散程度越小,數(shù)據(jù)越穩(wěn)定D.方差是標(biāo)準(zhǔn)差的平方,同樣可以反映數(shù)據(jù)的離散程度27、在數(shù)據(jù)分析中,聚類算法用于將數(shù)據(jù)分為不同的組。假設(shè)我們要對(duì)客戶進(jìn)行細(xì)分。以下關(guān)于聚類算法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.K-Means算法需要事先指定聚類的數(shù)量B.層次聚類可以形成層次結(jié)構(gòu)的聚類結(jié)果C.聚類算法的結(jié)果是唯一確定的,不受初始值和參數(shù)的影響D.可以根據(jù)業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)選擇合適的聚類算法28、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況至關(guān)重要。假設(shè)要在一組生產(chǎn)數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)方法的描述,正確的是:()A.僅通過觀察數(shù)據(jù)的分布,主觀判斷異常值,不使用任何定量方法B.采用單一的異常值檢測(cè)算法,不考慮其局限性和數(shù)據(jù)特點(diǎn)C.綜合運(yùn)用多種異常值檢測(cè)方法,結(jié)合數(shù)據(jù)的領(lǐng)域知識(shí)和業(yè)務(wù)背景,對(duì)檢測(cè)結(jié)果進(jìn)行評(píng)估和解釋D.忽略異常值的存在,認(rèn)為它們對(duì)數(shù)據(jù)分析結(jié)果沒有影響29、假設(shè)要分析一個(gè)醫(yī)療保健系統(tǒng)中的患者病歷數(shù)據(jù),包括診斷結(jié)果、治療方案、康復(fù)情況等,以發(fā)現(xiàn)疾病的趨勢(shì)和治療效果的影響因素。考慮到醫(yī)療數(shù)據(jù)的敏感性和隱私性,以下哪個(gè)方面需要特別注意?()A.數(shù)據(jù)加密和安全保護(hù)B.快速得出分析結(jié)果C.忽略數(shù)據(jù)的隱私問題D.公開所有數(shù)據(jù)以獲取更多幫助30、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對(duì)一個(gè)大型電商平臺(tái)的用戶購買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時(shí)希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在房地產(chǎn)行業(yè),數(shù)據(jù)分析可用于市場(chǎng)趨勢(shì)預(yù)測(cè)、房價(jià)評(píng)估、客戶需求分析等。論述如何運(yùn)用數(shù)據(jù)分析輔助房地產(chǎn)投資決策、項(xiàng)目開發(fā)規(guī)劃、銷售策略制定,并分析政策對(duì)房地產(chǎn)數(shù)據(jù)分析的影響。2、(本題5分)在能源交易領(lǐng)域,能源價(jià)格數(shù)據(jù)、交易規(guī)模數(shù)據(jù)等不斷更新。論述如何通過數(shù)據(jù)分析技術(shù),像能源市場(chǎng)趨勢(shì)預(yù)測(cè)、交易風(fēng)險(xiǎn)評(píng)估等,優(yōu)化能源交易決策,同時(shí)思考在數(shù)據(jù)波動(dòng)大、市場(chǎng)監(jiān)管嚴(yán)格和國際能源形勢(shì)影響方面的挑戰(zhàn)及應(yīng)對(duì)措施。3、(本題5分)在零售行業(yè),客戶忠誠度計(jì)劃產(chǎn)生了大量的數(shù)據(jù)。討論如何運(yùn)用數(shù)據(jù)分析來評(píng)估客戶忠誠度計(jì)劃的效果,識(shí)別高價(jià)值客戶,制定針對(duì)性的營銷策略,以提高客戶留存率和消費(fèi)頻率。4、(本題5分)金融投資組合管理中,如何運(yùn)用數(shù)據(jù)分析來選擇資產(chǎn)、分散風(fēng)險(xiǎn)和優(yōu)化收益?請(qǐng)論述數(shù)據(jù)分析在投資決策中的作用、模型的構(gòu)建和風(fēng)險(xiǎn)控制方法。5、(本題5分)在物流倉儲(chǔ)管理中,如何利用數(shù)據(jù)分析優(yōu)化貨物存儲(chǔ)布局,提高倉庫空間利用率和貨物出入庫效率。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)倉庫中的維度建模方法,包括星型模型、雪花模型等,說明它們的特點(diǎn)和適用場(chǎng)景,并舉例說明。2、(本題5分)闡述數(shù)據(jù)倉庫中的數(shù)據(jù)立方體技術(shù),說明其概念和優(yōu)勢(shì),以及如何構(gòu)建和使用數(shù)據(jù)立方體進(jìn)行多維分析。3、(本題5分)闡述數(shù)據(jù)分析師在項(xiàng)目中應(yīng)如何與團(tuán)隊(duì)成員(如業(yè)務(wù)人員、開發(fā)人員)進(jìn)行有效的溝通和協(xié)作,以確保項(xiàng)目的順利進(jìn)行。4、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶文化教育在小學(xué)商業(yè)素養(yǎng)培養(yǎng)中的作用
- 董海霞二年級(jí)語文《葡萄溝》教學(xué)設(shè)計(jì)新
- DB4415T 48-2025茶角胸葉甲綜合防控技術(shù)規(guī)程
- LED廣告屏幕安裝與維護(hù)合同模板
- 個(gè)人消費(fèi)貸款合同范例
- 二手住宅買賣合同正規(guī)范本
- 二手房分期付款合同書
- 不履行購銷合同糾紛案解析
- 專利權(quán)轉(zhuǎn)讓及合作協(xié)議合同書
- 專項(xiàng)企業(yè)產(chǎn)(股)權(quán)托管合同文本
- 2025年中國黃芪提取物市場(chǎng)調(diào)查研究報(bào)告
- 安徽省定遠(yuǎn)重點(diǎn)中學(xué)2024-2025學(xué)年第一學(xué)期高二物理期末考試(含答案)
- 教育教學(xué)質(zhì)量經(jīng)驗(yàn)交流會(huì)上校長講話:聚焦課堂關(guān)注個(gè)體全面提升教育教學(xué)質(zhì)量
- 2024人教新目標(biāo)(Go for it)八年級(jí)英語上冊(cè)【第1-10單元】全冊(cè) 知識(shí)點(diǎn)總結(jié)
- 北京市北師大附中2024-2025學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 企業(yè)新員工培訓(xùn)師帶徒方案
- 美容美發(fā)行業(yè)衛(wèi)生管理規(guī)范
- 年終總結(jié)總經(jīng)理講話
- 2024-2025學(xué)年北師大版數(shù)學(xué)八年級(jí)上冊(cè)期末綜合測(cè)試卷
- 培訓(xùn)機(jī)構(gòu)校區(qū)管理規(guī)劃
- 七年級(jí)英語閱讀理解55篇(含答案)
評(píng)論
0/150
提交評(píng)論