高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇_第1頁
高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇_第2頁
高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇_第3頁
高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇_第4頁
高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高二數(shù)學(xué)知識點(diǎn)總結(jié)15篇高二數(shù)學(xué)知識點(diǎn)總結(jié)1等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。面積公式若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:S=ab/2。且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:S=ch/2=c2/4。等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。反函數(shù)求導(dǎo)方法若F(X),G(X)互為反函數(shù),則:F'(X)_'(X)=1E.G.:y=arcsin_sinyy'_'=1(arcsinx)'_siny)'=1y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)其余依此類推高二數(shù)學(xué)知識點(diǎn)總結(jié)2反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[—π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[—π/2,π/2]區(qū)間內(nèi)。定義域[—1,1],值域[—π/2,π/2]。反函數(shù)求導(dǎo)方法若F(X),G(X)互為反函數(shù),則:F'(X)_'(X)=1E。G。:y=arcsin=sinyy'_'=1(arcsinx)'_siny)'=1y'=1/(siny)'=1/(cosy)=1/根號(1—sin^2y)=1/根號(1—x^2)其余依此類推高二數(shù)學(xué)知識點(diǎn)總結(jié)3反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sin_在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsin_,表示一個正弦值為_的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。反函數(shù)求導(dǎo)方法若F(_),G(_)互為反函數(shù),則:F'(_)_G'(_)=1E.G.:y=arcsin__=sinyy'__'=1(arcsin_)'_(siny)'=1y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-_^2)其余依此類推高二數(shù)學(xué)知識點(diǎn)總結(jié)4考點(diǎn)一:求導(dǎo)公式。例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3考點(diǎn)二:導(dǎo)數(shù)的幾何意義。例2.已知函數(shù)yf(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y1x2,則f(1)f(1)2,3)處的切線方程是例3.曲線yx32x24x2在點(diǎn)(1點(diǎn)評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查??键c(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點(diǎn)x0,y0x00,求直線l的方程及切點(diǎn)坐標(biāo)。點(diǎn)評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過該點(diǎn)存在切線的充分條件,而不是必要條件??键c(diǎn)四:函數(shù)的單調(diào)性。例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32點(diǎn)評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識。考點(diǎn)五:函數(shù)的極值。例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。(1)求a、b的值;(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:①求導(dǎo)數(shù)f'x;②求f'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。高二數(shù)學(xué)知識點(diǎn)總結(jié)5一、集合、簡易邏輯(14課時,8個)1、集合;2、子集;3、補(bǔ)集;4、交集;5、并集;6、邏輯連結(jié)詞;7、四種命題;8、充要條件。二、函數(shù)(30課時,12個)1、映射;2、函數(shù);3、函數(shù)的單調(diào)性;4、反函數(shù);5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;6、指數(shù)概念的擴(kuò)充;7、有理指數(shù)冪的運(yùn)算;8、指數(shù)函數(shù);9、對數(shù);10、對數(shù)的運(yùn)算性質(zhì);11、對數(shù)函數(shù)。12、函數(shù)的應(yīng)用舉例。三、數(shù)列(12課時,5個)1、數(shù)列;2、等差數(shù)列及其通項(xiàng)公式;3、等差數(shù)列前n項(xiàng)和公式;4、等比數(shù)列及其通頂公式;5、等比數(shù)列前n項(xiàng)和公式。四、三角函數(shù)(46課時,17個)1、角的概念的推廣;2、弧度制;3、任意角的三角函數(shù);4、單位圓中的三角函數(shù)線;5、同角三角函數(shù)的基本關(guān)系式;6、正弦、余弦的誘導(dǎo)公式;7、兩角和與差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10、周期函數(shù);11、函數(shù)的奇偶性;12、函數(shù)的圖象;13、正切函數(shù)的圖象和性質(zhì);14、已知三角函數(shù)值求角;15、正弦定理;16、余弦定理;17、斜三角形解法舉例。五、平面向量(12課時,8個)1、向量;2、向量的加法與減法;3、實(shí)數(shù)與向量的積;4、平面向量的坐標(biāo)表示;5、線段的定比分點(diǎn);6、平面向量的數(shù)量積;7、平面兩點(diǎn)間的距離;8、平移。六、不等式(22課時,5個)1、不等式;2、不等式的基本性質(zhì);3、不等式的證明;4、不等式的解法;5、含絕對值的不等式。七、直線和圓的方程(22課時,12個)1、直線的傾斜角和斜率;2、直線方程的點(diǎn)斜式和兩點(diǎn)式;3、直線方程的一般式;4、兩條直線平行與垂直的條件;5、兩條直線的交角;6、點(diǎn)到直線的距離;7、用二元一次不等式表示平面區(qū)域;8、簡單線性規(guī)劃問題;9、曲線與方程的概念;10、由已知條件列出曲線方程;11、圓的標(biāo)準(zhǔn)方程和一般方程;12、圓的參數(shù)方程。高二數(shù)學(xué)知識點(diǎn)總結(jié)6第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。第二章:數(shù)列??荚嚤乜肌5炔畹缺葦?shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來很容易,但做題卻不會做的類型??荚囶}中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實(shí)際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據(jù)實(shí)際問題的限制要求求最值。選修中的簡單邏輯用語、圓錐曲線和導(dǎo)數(shù):邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會用選擇題考這一知識點(diǎn),難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問難打一般會很大,而且較費(fèi)時間。所以不建議做。這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會考察用導(dǎo)數(shù)求最值,會用導(dǎo)數(shù)公式就難度不大。高二數(shù)學(xué)知識點(diǎn)總結(jié)7(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率。然說難度比較大,我建議考生,采取分部得分整個試高二數(shù)學(xué)知識點(diǎn)總結(jié)8等差數(shù)列對于一個數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:將以上n—1個式子相加,便會接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n—1個d,如此便得到上述通項(xiàng)公式。此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。值得說明的是,前n項(xiàng)的和Sn除以n后,便得到一個以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。等比數(shù)列對于一個數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。那么,通項(xiàng)公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的思想:a2=a1_,a3=a2_,a4=a3_,````````an=an—1_,將以上(n—1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n—1)個q的乘積,也即得到了所述通項(xiàng)公式。此外,當(dāng)q=1時該數(shù)列的前n項(xiàng)和Tn=a1_當(dāng)q≠1時該數(shù)列前n項(xiàng)的和Tn=a1_1—q^(n))/(1—q)。高二數(shù)學(xué)知識點(diǎn)總結(jié)9用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征1、本均值:2、樣本標(biāo)準(zhǔn)差:3.用樣本估計(jì)總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時,它們確實(shí)反映了總體的信息。4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍(3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;“去掉一個分,去掉一個最低分”中的科學(xué)道理高二數(shù)學(xué)知識點(diǎn)總結(jié)101、學(xué)會三視圖的分析:2、斜二測畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。3、表(側(cè))面積與體積公式:⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=⑷球體:①表面積:S=;②體積:V=4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;⑵直線與平面所成的角:直線與射影所成的角高二數(shù)學(xué)知識點(diǎn)總結(jié)111、直線的傾斜角的概念:當(dāng)直線l與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時,規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α<180°.當(dāng)直線l與x軸垂直時,α=90°.3、直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα⑴當(dāng)直線l與x軸平行或重合時,α=0°,k=tan0°=0;⑵當(dāng)直線l與x軸垂直時,α=90°,k不存在.由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.4、直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:斜率公式:3.1.2兩條直線的平行與垂直1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L22、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即3.2.1直線的點(diǎn)斜式方程1、直線的點(diǎn)斜式方程:直線經(jīng)過點(diǎn)且斜率為2、、直線的斜截式方程:已知直線的斜率為3.2.2直線的兩點(diǎn)式方程1、直線的兩點(diǎn)式方程:已知兩點(diǎn)2、直線的截距式方程:已知直線3.2.3直線的一般式方程1、直線的一般式方程:關(guān)于x、y的二元一次方程(A,B不同時為0)2、各種直線方程之間的互化。3.3直線的交點(diǎn)坐標(biāo)與距離公式3.3.1兩直線的交點(diǎn)坐標(biāo)1、給出例題:兩直線交點(diǎn)坐標(biāo)L1:3x+4y-2=0L1:2x+y+2=0解:解方程組得x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)3.3.2兩點(diǎn)間距離兩點(diǎn)間的距離公式3.3.3點(diǎn)到直線的距離公式1.點(diǎn)到直線距離公式:2、兩平行線間的距離公式:高二數(shù)學(xué)知識點(diǎn)總結(jié)12一、理解集合中的有關(guān)概念(1)集合中元素的特征:確定性,互異性,無序性。(2)集合與元素的關(guān)系用符號=表示。(3)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。(4)集合的表示法:列舉法,描述法,韋恩圖。(5)空集是指不含任何元素的集合??占侨魏渭系淖蛹?,是任何非空集合的真子集。二、函數(shù)一、映射與函數(shù):(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:二、函數(shù)的三要素:相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點(diǎn)必須同時具備)(1)函數(shù)解析式的求法:①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:(2)函數(shù)定義域的`求法:①含參問題的定義域要分類討論;②對于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實(shí)際意義來確定。(3)函數(shù)值域的求法:①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。三、函數(shù)的性質(zhì)函數(shù)的單調(diào)性、奇偶性、周期性單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。判定方法有:定義法(作差比較和作商比較)導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))復(fù)合函數(shù)法和圖像法。應(yīng)用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。判別方法:定義法,圖像法,復(fù)合函數(shù)法應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)平移變換y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱y=f(x)→y=-f(x),關(guān)于x軸對稱y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))伸縮變換:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;高二數(shù)學(xué)知識點(diǎn)總結(jié)131、向量的加法向量的加法滿足平行四邊形法則和三角形法則。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的運(yùn)算律:交換律:a+b=b+a;結(jié)合律:(a+b)+c=a+(b+c)。2、向量的減法如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0AB-AC=CB.即“共同起點(diǎn),指向被減”a=(x,y)b=(x',y')則a-b=(x-x',y-y').3、數(shù)乘向量實(shí)數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。當(dāng)λ>0時,λa與a同方向;當(dāng)λ<0時,λa與a反方向;當(dāng)λ=0時,λa=0,方向任意。當(dāng)a=0時,對于任意實(shí)數(shù)λ,都有λa=0。注:按定義知,如果λa=0,那么λ=0或a=0。實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。當(dāng)∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;當(dāng)∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。數(shù)與向量的乘法滿足下面的運(yùn)算律結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。4、向量的的數(shù)量積定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。定義:兩個向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。向量的數(shù)量積的運(yùn)算率a·b=b·a(交換率);(a+b)·c=a·c+b·c(分配率);向量的數(shù)量積的性質(zhì)a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。高二數(shù)學(xué)知識點(diǎn)總結(jié)14一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時,;當(dāng)時,;當(dāng)時,不存在。②過兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程①點(diǎn)斜式:直線斜率k,且過點(diǎn)注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。②斜截式:,直線斜率為k,直線在y軸上的截距為b③兩點(diǎn)式:()直線兩點(diǎn),④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。⑤一般式:(A,B不全為0)注意:各式的適用范圍特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)垂直直線系垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(三)過定點(diǎn)的直線系(?。┬甭蕿閗的直線系:,直線過定點(diǎn);(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。(6)兩直線平行與垂直當(dāng),時,;注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點(diǎn)相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點(diǎn),則(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離(10)兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。二、圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時,方程表示圓,此時圓心為,半徑為當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為,則有;;(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當(dāng)時兩圓外離,此時有公切線四條;當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)三、立體幾何初步1、柱、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺:幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形。(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。3、空間幾何體的直觀圖——斜二測畫法斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。4、柱體、錐體、臺體的表面積與體積(1)幾何體的表面積為幾何體各個面的面積的和。(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)(3)柱體、錐體、臺體的體積公式(4)球體的表面積和體積公式:V=;S=4、空間點(diǎn)、直線、平面的位置關(guān)系公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi)。應(yīng)用:判斷直線是否在平面內(nèi)用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言:公理2的作用:①它是判定兩個平面相交的方法。②它說明兩個平面的交線與兩個平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn)。③它可以判斷點(diǎn)在直線上,即證若干個點(diǎn)共線的重要依據(jù)。公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面。推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行空間直線與直線之間的位置關(guān)系①異面直線定義:不同在任何一個平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。求異面直線所成角步驟:A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補(bǔ)。(8)空間直線與平面之間的位置關(guān)系直線在平面內(nèi)——有無數(shù)個公共點(diǎn).三種位置關(guān)系的符號表示:aαa∩α=Aa‖α(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β相交——有一條公共直線。α∩β=b5、空間中的平行問題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行(2)平面與平面平行的判定及其性質(zhì)兩個平面平行的判定定理(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行→面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。(線線平行→面面平行),(3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質(zhì)定理(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題(1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論