人教版九年級上冊數(shù)學(xué)期末考試試卷附答案_第1頁
人教版九年級上冊數(shù)學(xué)期末考試試卷附答案_第2頁
人教版九年級上冊數(shù)學(xué)期末考試試卷附答案_第3頁
人教版九年級上冊數(shù)學(xué)期末考試試卷附答案_第4頁
人教版九年級上冊數(shù)學(xué)期末考試試卷附答案_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版九年級上冊數(shù)學(xué)期末考試試題一、選擇題。(每小題只有一個正確答案)1.下列旋轉(zhuǎn)中,旋轉(zhuǎn)中心為點A的是()A.B.C.D.2.拋物線y=﹣x2開口方向是()A.向上 B.向下 C.向左 D.向右3.二次函數(shù)y=3x2+2x的圖象的對稱軸為()A.x=﹣2 B.x=﹣3 C.x= D.x=4.下列事件中,是必然事件的是()A.?dāng)S一次骰子,向上一面的點數(shù)是6B.任意畫個三角形,其內(nèi)角和為180°C.籃球隊員在罰球線上投籃一次,未投中D.一元二次方程一定有兩個實數(shù)根5.一元二次方程ax2+bx+c=0,若有兩根1和﹣1,那么a+b+c=()A.﹣1 B.0 C.1 D.26.在拋物線y=x2﹣4x﹣4上的一個點是()A.(4,4) B.(3,﹣1) C.(﹣2,﹣8) D.(,)7.把拋物線y=x2()得到拋物線y=(x+1)2﹣1.A.向左平移1個單位長度,再向上平移1個單位長度B.向左平移1個單位長度,再向下平移1個單位長度C.向石平移1個單位長度,再向上平移1個單位長度D.向右平移1個單位長度,再向下平移1個單位長度8.AB、CD為⊙O的兩條不重合的直徑,則四邊形ACBD一定是()A.等腰梯形 B.矩形 C.菱形 D.正方形9.用配方法解下列方程時,配方有錯誤的是()A.化為B.化為C.化為D.化為10.在同一平面直角坐標(biāo)系中,函數(shù)y=kx與y=的圖象大致是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)二、填空題11.反比例函數(shù)y=的圖象在第_____象限.12.⊙O的半徑為10cm,點P到圓心O的距離為12cm,則點P和⊙O的位置關(guān)系是_____.13.當(dāng)m滿足條件_____時,關(guān)于x的方程(m2﹣4)x2+mx+3=0是一元二次方程.14.已知函數(shù)y=2(x﹣3)2+1,當(dāng)_____(填寫x需滿足的條件)時,y隨x的增大而增大.15.不透明袋子中裝有紅、綠小球各一個,除顏色外無其他差別,隨機(jī)摸出一個小球后,放回并搖勻,再隨機(jī)摸出一個,則第一次摸到紅球,第二次摸到綠球的概率為_____.16.某設(shè)計運動員在相同的條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000射中9環(huán)以上次數(shù)153378158321801根據(jù)頻率的穩(wěn)定性,估計這名運動員射擊一次“射中9環(huán)以上”的概率是_____.三、解答題17.解下列方程:x2+x(3x﹣4)=018.畫出△AOB關(guān)于點O對稱的圖形.19.請你分析以下問題:某校親子運動會中,小美一家三口參加“三人四足”比賽,需要小美、爸爸和媽媽排成一橫排,求小美排在媽媽右側(cè)身旁的概率.20.如圖,在平面直角坐標(biāo)系中,點A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點A.(1)求k的值;(2)將△AOB繞點O逆時針旋轉(zhuǎn)60°,得到△COD,其中點A與點C對應(yīng),試判斷點D是否在該反比例函數(shù)的圖象上?21.⊙O的直徑為10cm,AB、CD是⊙O的兩條弦,AB∥CD,AB=6cm,CD=8cm,求AB和CD之間的距離.22.已知關(guān)于x的方程(1)求證:方程總有兩個實數(shù)根(2)若方程有一個小于1的正根,求實數(shù)k的取值范圍23.如圖,有一塊矩形鐵皮(厚度不計),長10分米,寬8分米,在它的四角各切去一個同樣的正方形,然后將四周突出部分折起,就能制作一個無蓋方盒.(1)若無蓋方盒的底面積為48平方分米,那么鐵皮各角應(yīng)切去邊長是多少分米的正方形?(2)若要求制作的無蓋方盒的底面長不大于底面寬的3倍,并將無蓋方盒內(nèi)部進(jìn)行防銹處理,側(cè)面每平方分米的防銹處理費用為0.5元,底面每平方分米的防銹處理費用為2元,問鐵皮各角切去邊長是多少分米的正方形時,總費用最低?最低費用為多少元?24.如圖,已知:拋物線的頂點C在軸的正半軸上,一次函數(shù)與拋物線交于A、B兩點,與軸分別交于D、E兩點.(1)求的值;(2)求A、B兩點的坐標(biāo).25.已知如圖1,在△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過點D作⊙O的切線交BC于點E.(1)求證:∠B=∠ACD,DE=BC;(2)已知如圖2,BG是△BDE的中線,延長ED至點F,使ED=FD,求證:BF=2BG.參考答案1.A【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得解.【詳解】解:A、旋轉(zhuǎn)中心為點A,符合題意;

B、旋轉(zhuǎn)中心為點B,不符合題意;

C、旋轉(zhuǎn)中心為C,不符合題意;

D、旋轉(zhuǎn)中心為O,不符合題意;

故選:A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.旋轉(zhuǎn)的性質(zhì):“三特點”:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)線段相等;對應(yīng)角相等;旋轉(zhuǎn)不改變圖形的形狀和大小.2.B【解析】a=-1,所以開口向下.選A.3.D【分析】利用對稱軸公式求解即可【詳解】y=3x2+2xx=-=-=故選D【點睛】本題考查了二次函數(shù)的性質(zhì),熟練掌握對稱軸公式是解題的關(guān)鍵.4.B【解析】【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件.【詳解】解:A.?dāng)S一次骰子,向上一面的點數(shù)是6,屬于隨機(jī)事件;

B.任意畫個三角形,其內(nèi)角和為180°,屬于必然事件;

C.籃球隊員在罰球線上投籃一次未投中,屬于隨機(jī)事件;

D.一元二次方程一定有兩個實數(shù)根,屬于隨機(jī)事件;

故選:B.【點睛】本題主要考查了隨機(jī)事件,解題時注意:事先能肯定它一定會發(fā)生的事件稱為必然事件.5.B【解析】【分析】由一元二次方程解的意義把方程的根x=1代入方程,得到a+b+c=0.【詳解】解:把x=1代入一元二次方程ax2+bx+c=0得:a+b+c=0;

故選:B.【點睛】一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解,屬于基礎(chǔ)題型,比較簡單.6.D【分析】把各點的橫坐標(biāo)代入函數(shù)式,比較縱坐標(biāo)是否相符,逐一檢驗.【詳解】解:A、x=4時,y=x2-4x-4=-4≠4,點(4,4)不在拋物線上;B、x=3時,y=x2-4x-4=-7≠-1,點(3,-1)不在拋物線上;C、x=-2時,y=x2-4x-4=8≠-8,點(-2,-8)不在拋物線上;D、x=時,y=x2-4x-4=,點(,)在拋物線上.故選D.【點睛】此題考查了二次函數(shù)圖象上點的坐標(biāo)特征:二次函數(shù)圖象上點的坐標(biāo)滿足其解析式.7.B【解析】【分析】先確定拋物線y=x2的頂點坐標(biāo)為(0,0),拋物線y=(x+1)2-1的頂點坐標(biāo)為(-1,-1),然后利用(0,0)平移得到點(-1,-1)的過程得到拋物線的平移過程.【詳解】解:拋物線y=x2的頂點坐標(biāo)為(0,0),拋物線y=(x+1)2-1的頂點坐標(biāo)為(-1,-1),因為點(0,0)向左平移1個單位,再向下平移1個單位得到點(-1,-1),所以把拋物線y=向左平移1個單位,再向下平移1個單位得到拋物線y=(+1)2-1.故選B.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.8.B【解析】【分析】根據(jù)圓的直徑相等,且圓心為直徑的中點,得到圓心到A、B、C及D四點的距離相等,根據(jù)對角線互相平分且對角線相等,得到四邊形ACBD為矩形.【詳解】解:連接AC、BC、BD、AD,∵AB、CD為圓O的直徑,∴OA=OB,OC=OD,∴四邊形ACBD為平行四邊形,∵AB=CD,∴四邊形ACBD是矩形.故選:B.【點睛】此題考查圓周角定理(圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半)和矩形的判別方法(對角線互相平分且相等的四邊形是矩形),考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道基礎(chǔ)題.9.C【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方分別進(jìn)行配方,即可求出答案.【詳解】A、由原方程,得,等式的兩邊同時加上一次項系數(shù)2的一半的平方1,得;故本選項正確;B、由原方程,得,等式的兩邊同時加上一次項系數(shù)?7的一半的平方,得,,故本選項正確;C、由原方程,得,等式的兩邊同時加上一次項系數(shù)8的一半的平方16,得(x+4)2=7;故本選項錯誤;D、由原方程,得3x2?4x=2,化二次項系數(shù)為1,得x2?x=等式的兩邊同時加上一次項系數(shù)?的一半的平方,得;故本選項正確.故選:C.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).10.B【分析】分k>0和k<0兩種情況分類討論即可確定正確的選項.【詳解】當(dāng)k>0時,函數(shù)y=kx的圖象位于一、三象限,y=(k≠0)的圖象位于一、三象限,(1)符合;當(dāng)k<0時,函數(shù)y=kx的圖象位于二、四象限,y=(k≠0)的圖象位于二、四象限,(4)符合;故選B.【點睛】考查了反比例函數(shù)和正比例函數(shù)的性質(zhì),解題的關(guān)鍵是能夠分類討論,難度不大.11.一、三【解析】【分析】直接根據(jù)反比例函數(shù)的性質(zhì)求解.【詳解】解:因為k=5>0,

所以反比例函數(shù)圖象分布在第一、三象限.

故答案為一、三.【點睛】本題考查了反比例函數(shù)的性質(zhì):反比例函數(shù)y=(k≠0)的圖象是雙曲線;當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減小;當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.12.點P在⊙O外【分析】根據(jù)點與圓心的距離d,則d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).【詳解】解:∵⊙O的半徑r=10cm,點P到圓心O的距離OP=12cm,∴OP>r,∴點P在⊙O外,故答案為點P在⊙O外.【點睛】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點到圓心的距離為d,則有:當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上,當(dāng)d<r時,點在圓內(nèi).13.m≠±2【解析】【分析】利用一元二次方程的定義判斷即可確定出所求.【詳解】解:∵關(guān)于x的方程(m2-4)x2+mx+3=0是一元二次方程,∴m2-4≠0,即m≠±2,故答案為:m≠±2【點睛】此題考查了一元二次方程的定義(只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程),熟練掌握一元二次方程的定義是解本題的關(guān)鍵.14.x≥3【解析】【分析】直接利用二次函數(shù)的性質(zhì)分析得出答案.【詳解】解:∵函數(shù)y=2(x-3)2+1,2>0,∴圖象開口向上,對稱軸為直線x=3,∴x≥3時,y隨x的增大而增大.故答案為x≥3.【點睛】此題主要考查了二次函數(shù)的性質(zhì):當(dāng)a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<時,y隨x的增大減??;x>時,y隨x的增大而增大.15.【解析】【分析】列表得出所有等可能的情況數(shù),找出第一次摸到紅球第二次摸到綠球的情況數(shù),即可確定出所求的概率.【詳解】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16.0.8【分析】首先根據(jù)表格分別求出每一次實驗的頻率,然后根據(jù)頻率即可估計概率.【詳解】解:15÷20=0.75,33÷40=0.825,78÷100=0.78,158÷200=0.79,321÷400=0.8025,801÷1000=0.801,∴估計這名運動員射擊一次“射中9環(huán)以上”的概率是0.8.故答案為0.8.【點睛】本題考查了利用頻率估計概率的思想(大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率),解題的關(guān)鍵是求出每一次事件的頻率,然后即可估計概率解決問題.17.x1=0,x2=1.【解析】【分析】先將方程整理成一般式,再利用因式分解法求解可得.【詳解】∵x2+x(3x﹣4)=0,∴x2+3x2﹣4x=0,4x2﹣4x=0,∴4x(x﹣1)=0,則4x=0或x﹣1=0,解得x1=0,x2=1.【點睛】因式分解法解一元二次方程的一般步驟:①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.18.見解析.【解析】【分析】利用中心對稱圖形的性質(zhì),得出對應(yīng)點位置,進(jìn)而得出答案.【詳解】如圖所示:△A′B′O即為所求.【點睛】此題主要考查了中心對稱,正確得出對應(yīng)點位置是解題關(guān)鍵..19..【解析】【分析】記小美、爸爸和媽媽分別為A,B,C,列出三人排成一排所有等可能結(jié)果,并從中找到小美排在媽媽右側(cè)身旁的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】記小美、爸爸和媽媽分別為A,B,C,則三人排成一排有如下6種等可能結(jié)果:ABC,ACB,BAC,BCA,CAB,CBA,其中小美排在媽媽右側(cè)身旁的有BCA和CAB兩種情況,所以小美排在媽媽右側(cè)身旁的概率為=.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20.(1);(2)D(1,)在反比例函數(shù)y=的圖象上【詳解】試題分析:(1)根據(jù)待定系數(shù)法,直接代入點的坐標(biāo)即可求得k;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可求出D點的坐標(biāo),再代入解析式可確定.試題解析:解:(1)∵函數(shù)y=的圖象過點A(,1),∴k=xy=×1=;(2)∵B(2,0),∴OB=2,∵△AOB繞點O逆時針旋轉(zhuǎn)60°得到△COD,∴OD=OB=2,∠BOD=60°,如圖,過點D作DE⊥x軸于點E,DE=OE?sin60°=2×=,OE=OD?cos60°=2×=1,∴D(1,),由(1)可知y=,∴當(dāng)x=1時,y==,∴D(1,)在反比例函數(shù)y=的圖象上.考點:反比例函數(shù)的圖像與性質(zhì)21.弦AB與CD的距離為7cm或1cm.【解析】【分析】分兩種情況考慮:當(dāng)兩條弦位于圓心O一側(cè)時,如圖1所示,過O作OE⊥CD,交CD于點F,交AB于點E,連接OA,OC,由AB∥CD,得到OE⊥AB,利用垂徑定理得到E與F分別為CD與AB的中點,在直角三角形AOF中,利用勾股定理求出OF的長,在三角形COE中,利用勾股定理求出OE的長,由OE-OF即可求出EF的長;當(dāng)兩條弦位于圓心O兩側(cè)時,如圖2所示,同理由OE+OF求出EF的長即可.【詳解】分兩種情況考慮:當(dāng)兩條弦位于圓心O一側(cè)時,如圖1所示,過O作OE⊥AB,交AB于點E,交CD于點F,連接OA,OC,∵AB∥CD,∴OE⊥CD,∴E、F分別為AB、CD的中點,∴AE=BE=AB=3cm,CF=DF=CD=4cm,在Rt△COF中,OC=5cm,CF=4cm,根據(jù)勾股定理得:OF=3cm,在Rt△AOE中,OA=5cm,AE=3cm,根據(jù)勾股定理得:OE═4cm,則EF=OE﹣OF=4cm﹣3cm=1cm;當(dāng)兩條弦位于圓心O兩側(cè)時,如圖2所示,同理可得EF=4cm+3cm=7cm,綜上,弦AB與CD的距離為7cm或1cm.【點睛】此題考查了垂徑定理(垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?,勾股定理(在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方),利用了分類討論的思想,熟練掌握垂徑定理是解本題的關(guān)鍵.22.(1)證明見解析;(2)【分析】(1)證出根的判別式即可完成;(2)將k視為數(shù),求出方程的兩個根,即可求出k的取值范圍.【詳解】(1)證明:∴方程總有兩個實數(shù)根(2)∴∴∵方程有一個小于1的正根∴∴【點睛】本題考查一元二次方程根的判別式與方程的根之間的關(guān)系,熟練掌握相關(guān)知識點是解題關(guān)鍵.23.(1)鐵皮各角應(yīng)切去邊長是1分米的正方形;(2)當(dāng)鐵皮各角切去邊長是3.5分米的正方形時,總費用最低,最低費用為20元.【解析】【分析】(1)設(shè)鐵皮各角應(yīng)切去邊長是x分米的正方形,則無蓋方盒的底面是長為(10-2x)分米、寬為(8-2x)分米的矩形,根據(jù)矩形的面積公式結(jié)合無蓋方盒的底面積為48平方分米,即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論;(2)設(shè)鐵皮各角切去邊長是m分米的正方形,防銹處理所需總費用為w元,由無蓋方盒的底面長不大于底面寬的3倍可得出關(guān)于m的一元一次不等式,解之可得出m的取值范圍,由總費用=0.5×側(cè)面積+2×底面積可得出w關(guān)于m的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)設(shè)鐵皮各角應(yīng)切去邊長是x分米的正方形,則無蓋方盒的底面是長為(10﹣2x)分米、寬為(8﹣2x)分米的矩形,由題意得:(10﹣2x)(8﹣2x)=48,整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵8﹣2x>0,∴x<4,∴x=1.答:鐵皮各角應(yīng)切去邊長是1分米的正方形.(2)設(shè)鐵皮各角切去邊長是m分米的正方形,防銹處理所需總費用為w元,∵制作的無蓋方盒的底面長不大于底面寬的3倍,∴10﹣2m≤3(8﹣2m),解得:m≤.根據(jù)題意得:w=0.5×2×[m(10﹣2m)+m(8﹣2m)]+2(10﹣2m)(8﹣2m)=4m2﹣54m+160,∴a=4,b=﹣54,∴當(dāng)0<m≤時,w的值隨m值的增大而減小,∴當(dāng)m=時,w取得最小值,最小值為20.答:當(dāng)鐵皮各角切去邊長是分米的正方形時,總費用最低,最低費用為20元.【點睛】本題考查了一元二次方程的應(yīng)用、一元一次不等式的應(yīng)用以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量之間的關(guān)系,找出w關(guān)于m的函數(shù)關(guān)系式.24.(1);(2)A(1,4),B(6,9).【詳解】試題分析:(1)根據(jù)拋物線y=x2-(m+3)x+9的頂點C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論