中國科學(xué)院大學(xué)《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
中國科學(xué)院大學(xué)《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
中國科學(xué)院大學(xué)《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
中國科學(xué)院大學(xué)《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁中國科學(xué)院大學(xué)《機(jī)器學(xué)習(xí)》

2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,模型的可解釋性也是一個(gè)重要的問題。以下關(guān)于模型可解釋性的說法中,錯(cuò)誤的是:模型的可解釋性是指能夠理解模型的決策過程和預(yù)測結(jié)果的能力??山忉屝詫τ谝恍╆P(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯(cuò)誤的是()A.線性回歸模型具有較好的可解釋性,因?yàn)樗臎Q策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因?yàn)榭梢酝ㄟ^樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡(luò)模型通常具有較低的可解釋性,因?yàn)槠錄Q策過程非常復(fù)雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會降低性能2、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會對算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對性能沒有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)3、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能4、某機(jī)器學(xué)習(xí)項(xiàng)目需要對視頻數(shù)據(jù)進(jìn)行分析和理解。以下哪種方法可以將視頻數(shù)據(jù)轉(zhuǎn)換為適合機(jī)器學(xué)習(xí)模型處理的形式?()A.提取關(guān)鍵幀B.視頻編碼C.光流計(jì)算D.以上方法都可以5、在一個(gè)語音合成任務(wù)中,需要將輸入的文本轉(zhuǎn)換為自然流暢的語音。以下哪種技術(shù)或模型常用于語音合成?()A.隱馬爾可夫模型(HMM)B.深度神經(jīng)網(wǎng)絡(luò)(DNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),如LSTM或GRUD.以上都是6、在進(jìn)行聚類分析時(shí),有多種聚類算法可供選擇。假設(shè)我們要對一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個(gè)數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響7、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成8、對于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以9、在處理文本分類任務(wù)時(shí),除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對新聞文章進(jìn)行分類。以下關(guān)于文本分類模型的描述,哪一項(xiàng)是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長文本時(shí)性能優(yōu)于RNN和CNN,但其計(jì)算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好10、在一個(gè)文本生成任務(wù)中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是11、在一個(gè)分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林12、假設(shè)正在研究一個(gè)自然語言處理任務(wù),需要對句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時(shí)記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)13、假設(shè)正在比較不同的聚類算法,用于對一組沒有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法14、在進(jìn)行特征工程時(shí),需要對連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化15、某機(jī)器學(xué)習(xí)項(xiàng)目需要對文本進(jìn)行情感分類,同時(shí)考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長短時(shí)記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能16、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以17、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用18、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹19、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎勵(lì)或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略20、假設(shè)正在進(jìn)行一個(gè)情感分析任務(wù),使用深度學(xué)習(xí)模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長短時(shí)記憶網(wǎng)絡(luò)(LSTM)D.以上都可以二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)機(jī)器學(xué)習(xí)在寵物訓(xùn)練中的作用是什么?2、(本題5分)什么是聯(lián)邦學(xué)習(xí)?它的優(yōu)勢和應(yīng)用場景是什么?3、(本題5分)什么是模型的可解釋性?為什么它很重要?4、(本題5分)簡述Adaboost算法的基本原理。5、(本題5分)解釋機(jī)器學(xué)習(xí)在獸醫(yī)學(xué)中的疾病診斷。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用K-Means聚類分析城市的交通流量模式。2、(本題5分)使用強(qiáng)化學(xué)習(xí)算法訓(xùn)練機(jī)器人完成復(fù)雜任務(wù),如搬運(yùn)物品。3、(本題5分)利用眼科醫(yī)學(xué)數(shù)據(jù)檢測眼部疾病。4、(本題5分)通過變分自編碼器(VAE)對圖像數(shù)據(jù)進(jìn)行壓縮和重建。5、(本題5分)利用KNN算法對土壤的肥力進(jìn)行分類。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)探討在醫(yī)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論