適用于新教材2025版高考數(shù)學(xué)一輪總復(fù)習(xí)第三章函數(shù)與基本初等函數(shù)課時(shí)規(guī)范練7函數(shù)的單調(diào)性與最值北師大版_第1頁
適用于新教材2025版高考數(shù)學(xué)一輪總復(fù)習(xí)第三章函數(shù)與基本初等函數(shù)課時(shí)規(guī)范練7函數(shù)的單調(diào)性與最值北師大版_第2頁
適用于新教材2025版高考數(shù)學(xué)一輪總復(fù)習(xí)第三章函數(shù)與基本初等函數(shù)課時(shí)規(guī)范練7函數(shù)的單調(diào)性與最值北師大版_第3頁
適用于新教材2025版高考數(shù)學(xué)一輪總復(fù)習(xí)第三章函數(shù)與基本初等函數(shù)課時(shí)規(guī)范練7函數(shù)的單調(diào)性與最值北師大版_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

課時(shí)規(guī)范練7基礎(chǔ)鞏固組1.下列函數(shù)中是增函數(shù)的為()A.f(x)=-x B.f(x)=2C.f(x)=x2 D.f(x)=3答案:D解析:借助函數(shù)的圖象可知,對于A,函數(shù)單調(diào)遞減,不合題意;對于B,依據(jù)指數(shù)函數(shù)的性質(zhì)可知函數(shù)單調(diào)遞減,不合題意;對于C,函數(shù)在定義域內(nèi)不具有單調(diào)性,不合題意;對于D,依據(jù)冪函數(shù)的性質(zhì)可知,函數(shù)在其定義域內(nèi)為增函數(shù),符合題意.故選D.2.函數(shù)f(x)=|x-1|+3x的單調(diào)遞增區(qū)間是()A.[1,+∞) B.(-∞,1]C.[0,+∞) D.(-∞,+∞)答案:D解析:由于f(x)=|x-1|+3x=4x-1,x≥1,2x+1,x<1,明顯當(dāng)x≥1時(shí),f(x)單調(diào)遞增,當(dāng)x<3.已知y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(a2-1),則實(shí)數(shù)a的取值范圍為()A.(0,1) B.(-2,1) C.(0,2) D.(0,2)答案:A解析:因?yàn)閥=f(x)在定義域(-1,1)上是減函數(shù),所以由f(1-a)<f(a2-1)?-1<1-a<4.(2024·陜西西安高三檢測)設(shè)函數(shù)f(x)=2xx-2在區(qū)間[3,4]上的最大值和最小值分別為M,m,則A.4 B.6 C.10 D.24答案:C解析:因?yàn)閒(x)=2(x-2)+4x-2=2+4x-2,所以f(x)在[3,4]上單調(diào)遞減.所以m=f(4)=4,M=f5.y=-x2+2xA.(-∞,-1] B.[-1,+∞)C.(-∞,-2] D.[0,+∞)答案:C解析:由x2+2x≥0,得x≤-2或x≥0,則函數(shù)的定義域?yàn)?-∞,-2]∪[0,+∞).令t=x2+2x,則y=-t,因?yàn)閠=x2+2x在(-∞,-2]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增,y=-t在定義域內(nèi)為減函數(shù),所以y=-x2+2x在(-∞,-2]上單調(diào)遞增,在[0,+∞)上單調(diào)遞減,所以y=-x2+2x6.(2024·浙江臺(tái)州玉環(huán)中學(xué)月考)已知函數(shù)f(x)=(a-2)x,x≥2,(12)

x-1,xA.(-∞,-2) B.-∞,138C.(-∞,2] D.138,2答案:B解析:∵f(x)對隨意的x1,x2(x1≠x2)都有f(x1)-f(x2)x1-x2<0成立,∴f(x)在R上單調(diào)遞減,∴7.(多選)(2024·江蘇宿遷模擬)已知函數(shù)f(x)=bx+ax+2在區(qū)間(-2,+∞)上單調(diào)遞增,則實(shí)數(shù)a,A.a=1,b>32 B.a>4,b=C.a=-1,b=2 D.a=2,b=-1答案:AC解析:f(x)=bx+ax+2=b+a-2bx+2在(-2,+∞)上單調(diào)遞增,則滿意a-2b<0,即a<2b,故a=8.(2024·上海大同中學(xué)三模)函數(shù)y=1x2-ax-a在-2,-12答案:-1,12解析:因?yàn)閥=1x2-ax-a在-2,-12上單調(diào)遞增,所以f(x)=x2-ax-a在-2,-12上單調(diào)遞減,同時(shí)需滿意f(-2)f-12>0,即-12≤a2,(4+a)(綜合提升組9.(2024·湖北黃石模擬)設(shè)函數(shù)f(x)=-x2+4x,x≤4,log2x,A.[2,3] B.(2,3)C.(2,3] D.[2,3)答案:A解析:函數(shù)f(x)=-x函數(shù)f(x)在(-∞,2]以及(4,+∞)上單調(diào)遞增,在[2,4]上單調(diào)遞減,故若函數(shù)y=f(x)在區(qū)間(m,m+1]上單調(diào)遞減,需滿意m≥2,m10.已知函數(shù)f(x)=x+4x,g(x)=2x+a,若?x1∈12,1,?x2∈[1,2],使得f(x1)≤g(x2),則實(shí)數(shù)a的取值范圍是()A.12,+∞B.-∞,12∪[3,+∞)C.-∞,12∪12,+∞D(zhuǎn).92,+∞答案:D解析:∵?x1∈12,1,?x2∈[1,2],使得f(x1)≤g(x2),∴f(x)max≤g(x)max.∵f(x)=x+4x在12,1上單調(diào)遞減,∴f(x)max=f12=172.∵g(x)=2x+a在[1,2]上單調(diào)遞增,∴g(x)max=g(2)=4+a.∴4+a≥172,解得a≥9創(chuàng)新應(yīng)用組11.(2024·黑龍江哈爾濱六中期末)已知f(x)是[0,+∞)上的單調(diào)函數(shù),若f[f(x)-x]=2,則g(x)=f(x)-A.[-1,0) B.[-1,1)C.(-1,1) D.[-1,+∞)答案:B解析:令t=f(x)-x,所以f(x)=t+x,令x=t,所以f(t)=t+t.又因?yàn)閒[f(x)-x]=2,所以f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論