AI Agents如何重塑未來的工作(2024年)_第1頁
AI Agents如何重塑未來的工作(2024年)_第2頁
AI Agents如何重塑未來的工作(2024年)_第3頁
AI Agents如何重塑未來的工作(2024年)_第4頁
AI Agents如何重塑未來的工作(2024年)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Promptingforaction

HowAIagentsarereshapingthefutureofwork

Expandedcapabilities,usecasesandenterpriseimpactfromGenerativeAI

November2024

DeloitteAIInstitute

Promptingforaction|HowAIagentsarereshapingthefutureofwork

AbouttheDeloitteAIInstitute

TheDeloitteAIInstituteTMhelpsorganizationsconnectthedifferentdimensions

ofarobust,highlydynamicandrapidlyevolvingAIecosystem.TheInstituteleads

conversationsonappliedAIinnovationacrossindustries,withcutting-edgeinsights,topromotehuman-machinecollaborationinthe“AgeofWith.”

TheDeloitteAIInstituteaimstopromoteadialogueanddevelopmentofartificial

intelligence,stimulateinnovation,andexaminebothchallengestoAIimplementation

andwaystoaddressthem.TheInstitutecollaborateswithanecosystemcomposedof

academicresearchgroups,startups,entrepreneurs,innovators,matureAIproductleadersandAIvisionariestoexplorekeyareasofartificialintelligenceincludingrisks,policies,

ethics,futureofworkandtalent,andappliedAIusecases.CombinedwithDeloitte’sdeepknowledgeandexperienceinartificialintelligenceapplications,theInstitutehelpsmakesenseofthiscomplexecosystem,andasaresultdeliversimpactfulperspectivestohelporganizationssucceedbymakinginformedAIdecisions.

NomatterwhatstageoftheAIjourneyyou’rein,whetheryou’reaboardmemberora

C-suiteleaderdrivingstrategyforyourorganizationorahands-ondatascientistbringinganAIstrategytolife,theInstitutecanhelpyoulearnmoreabouthoworganizationsacrosstheworldareleveragingAIforacompetitiveadvantage.VisitusattheDeloitteAIInstitutetoaccessthefullbodyofourwork,subscribetoourpodcastsandnewsletter,andjoinusatourmeetupsandliveevents.Let’sexplorethefutureofAItogether.

/us/AIInstitute

2

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Content

Keytakeaways

?AIagentsarereshapingindustriesbyexpandingthepotentialapplicationsofGenerativeAI(GenAI)andtypicallanguagemodels.

?MultiagentAIsystemscansignificantlyenhancethequalityofoutputsandcomplexityofworkperformedbysingleAIagents.

?Forward-thinkingbusinessesandgovernmentsarealreadyimplementingAIagentsandmultiagentAIsystemsacrossarangeofusecases.

?Executiveleadersshouldmakemovesnowtoprepareforandembracethisnexteraofintelligentorganizationaltransformation.

Introduction4

AIagents:5

Whatmakesthemdifferent—andwhytheymatter

MultiagentAIsystems:7

AmplifyingthepotentialofAIagents

KeybenefitsofAIagentsandmultiagentAIsystems:7

AdvantagesthatAIagentsareunlockingfororganizationstoday

Transformingstrategicinsights:8

Areal-worldexampleofamultiagentAIsystem

Achievingimpactthroughtargetedusecases:11

HowAIagentsarechangingindustriesandenterprisedomains

Enablingnewwaysofworkingandnewhorizonsofinnovation:13

Implicationsforstrategy,risk,talent,businessprocessesandtechnology

Theroadahead:15

WhatweexpectasAIagentscontinuetoevolve

Chartingacourseintothenexteraoforganizationaltransformation:16

Recommendedactionsforleaderstotakenow

Getintouch&Endnotes17

3

Promptingforaction|HowAIagentsarereshapingthefutureofwork

4

Introduction

Howcanweoperatefasterandmoreefficiently?

Thisquestionhasalwaysbeenattheforefrontofstrategic

agendas—butGenerativeAI(GenAI)ishelpingunlocknew

answers.Withitsabilitytoproducenoveloutputsfromplain-

languageprompts,GenAIhasenabledenterprisestosignificantlyenhancespeedandproductivityacrossarangeofbusinesstasks.However,usecasesfortypicallanguagemodelshaveonlyjust

beguntoshowGenAI’stransformativepotential.InthistimeofrapidAIevolution,it’stimetothinkbiggerandbolder:from

streamliningroutinetaskstoredesigningentireworkflows.

Nowthequestionforbusinessandgovernmentleadersisbecoming:

HowcanwerethinkourbusinessprocesseswithGenAI?

Largelanguagemodels(LLMs)andGenAI-poweredtoolsusedbymostorganizationstodayserveashelpfulassistants:Ahumanworkerentersaprompt,GenAIquicklyproducesanoutput.

However,thisinteractionislargelytransactionalandlimitedinscope.

WhatifGenAIcouldbemorelikeaskilledcollaboratorthatwillnotonlyrespondtorequestsbutalsoplanthewholeprocesstohelpsolveacomplexneed?WhatifGenAIcouldalsotapintothenecessarydata,digitaltoolsandcontextualknowledgetoorchestratetheprocessendtoend,autonomously?

Adaptorfallbehind

Attheendof2023,nearly1in6

surveyedbusinessleaderssaid

GenAIhadalreadytransformedtheirbusinesses1

ThisvisionisbecomingarealitywiththeemergenceofAIagentsandmultiagentAIsystems—apowerfuladvancementinwhat’spossiblethroughhuman-AIpartnership.LeadingcompaniesandgovernmentagenciesarealreadyseeingthevalueofAIagentsandputtingthemintopractice.

Inthispaper,weexplorewhatmakesAIagentssogroundbreaking.Wethenrevealhowtheyarereshapingindustries,including

governmentandpublicservices,byenablingnewusecases,

enhancingautomationandacceleratingthefutureofintelligentorganizationaltransformation.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

AIagents:Whatmakesthemdifferent—andwhytheymatter

TograspthepotentialvalueofAIagentsandtheirrolein

expandingtheautomationhorizon,itisimportanttounderstandhowtheydifferfromthelanguagemodelsandGenAIapplicationsfamiliartobusinessleaderstoday.

AIagentsarereasoningenginesthatcanunderstandcontext,planworkflows,

connecttoexternaltoolsanddata,andexecuteactionstoachieveadefinedgoal.

WhilethismaysoundbroadlylikewhatstandaloneLLMsor

GenAIapplicationscando,therearekeydistinctionsthat

makeAIagentssignificantlymorepowerful.(Seetable,page6.)

TypicalLLM-poweredchatbots,forexample,usuallyhavelimitedabilitytounderstandmultistepprompts—muchlesstoplanandexecutewholeworkflowsfromasingleprompt.Inessence,they

conformtothe“input-output”paradigmoftraditionalapplicationsandcangetconfusedwhenpresentedwitharequestthatmust

bedeconstructedintomultiplesmallertasks.Theyalsostruggletoreasonoversequences,suchascompositionaltasksthatrequireconsiderationoftemporalandtextualcontexts.Theselimitationsareevenmorepronouncedwhenusingsmalllanguagemodels

(SLMs),which,becausetheyaretrainedonsmallervolumesofdata,typicallysacrificedepthofknowledgeand/orqualityofoutputsinfavorofimprovedcomputationalcostandspeed.

Asaresult,earlyGenAIusecaseshavemostlybeenlimitedtostandaloneapplicationssuchasgeneratingpersonalizedadsbasedonacustomer’ssearchhistory,reviewingcontractsandlegaldocumentstoidentifypotentialregulatoryconcerns,

orpredictingmolecularbehavioranddruginteractionsinpharmaceuticalresearch.

AIagentsexcelinaddressingtheselimitationswhilealso

leveragingcapabilitiesofdomain-andtask-specificdigitaltoolstocompletemorecomplicatedtaskseffectively.Forexample,

AIagentsequippedwithlong-termmemorycanremember

customerandconstituentinteractions—includingemails,chatsessionsandphonecalls—acrossdigitalchannels,continuouslylearningandadjustingpersonalizedrecommendations.This

contrastswithtypicalLLMsandSLMs,whichareoftenlimitedtosession-specificinformation.Moreover,AIagentscanautomateend-to-endprocesses,particularlythoserequiringsophisticatedreasoning,planningandexecution.

AIagentsareopeningnewpossibilitiestodriveenterprise

productivityandprogramdeliverythroughbusinessprocess

automation.UsecasesthatwereoncethoughttoocomplicatedforGenAIcannowbeenabledatscale—securelyandefficiently.

Inotherwords:AIagentsdon’tjustinteract.Theymoreeffectivelyreasonandactonbehalfoftheuser.

5

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Anewparadigmfor

human-machinecollaboration

Throughtheirabilitytoreason,plan,rememberandact,

AIagentsaddresskeylimitationsoftypicallanguagemodels.

AIagents

Typicallanguagemodels

Automateentireworkflows/processes

Createandexecutemultistepplanstoachieveauser’sgoal,adjustingactionsbasedon

real-timefeedback

Utilizeshort-termandlong-termmemorytolearnfromprevioususerinteractionsand

providepersonalizedresponses;Memorymaybesharedacrossmultipleagentsinasystem

AugmentinherentlanguagemodelcapabilitieswithAPIsandtools(e.g.,dataextractors,imageselectors,searchAPIs)toperformtasks

Adjustdynamicallytonewinformationandreal-timeknowledgesources

Canleveragetask-specificcapabilities,knowledgeandmemorytovalidateandimprovetheirownoutputsandthoseofotheragentsinasystem

Usecasescope

Planning

Memory&fine-tuning

Tool

integration

Data

integration

Accuracy

Automatetasks

Arenotcapableofplanningororchestratingworkflows

Donotretainmemoryandhavelimitedfine-tuningcapabilities

Arenotinherentlydesignedtointegratewithexternaltoolsorsystems

Relyonstaticknowledgewithfixedtrainingcutoffdates

Typicallylackself-assessmentcapabilitiesandarelimitedtoprobabilisticreasoningbasedontrainingdata

6

Promptingforaction|HowAIagentsarereshapingthefutureofwork

7

MultiagentAIsystems:

AmplifyingthepotentialofAIagents

WhileindividualAIagentscanoffervaluableenhancements,the

trulytransformativepowerofAIagentscomeswhentheywork

togetherwithotheragents.Suchmultiagentsystemsleverage

specializedroles,enablingorganizationstoautomateandoptimizeprocessesthatindividualagentsmightstruggletohandlealone.

MultiagentAIsystemsemploy

multiple,role-specificAIagentsto

understandrequests,planworkflows,coordinaterole-specificagents,

streamlineactions,collaboratewithhumansandvalidateoutputs.

MultiagentAIsystemstypicallyinvolvestandard-taskagents(e.g.,userinterfaceanddatamanagementagents)workingwithspecialized-skilland-toolagents(e.g.,dataextractoror

imageinterpreteragents)toachieveagoalspecifiedbyauser.

AtthecoreofeveryAIagentisalanguagemodelthatprovides

asemanticunderstandingoflanguageandcontext—but

dependingontheusecase,thesameordifferentlanguagemodelsmaybeusedbyagentsinasystem.Thisapproachcanallowsomeagentstoshareknowledgewhileothersvalidateoutputsacross

thesystem—improvingqualityandconsistencyintheprocess.

Thatpotentialisfurtherenhancedbyprovidingagentswithsharedshort-andlong-termmemoryresourcesthatreducethe

needforhumanpromptingintheplanning,validationanditerationstagesofagivenprojectorusecase.

Thisconceptextendswhat’spossiblewithindividualAIagents

bytakingateamoragencyapproach.Bydecomposingadetailedprocessintomultipletasks,assigningtaskstoagentsoptimizedtoperformthetasks,andorchestratingagentandhuman

collaborationateachstageoftheworkflow,thistypeofsystemhasprovenmuchmorelikelytoproducehigherquality,fasterandmoretrustworthyoutcomes.2,3

Inotherwords:MultiagentAIsystemsdon’tjustreason

andactonbehalfoftheuser.Theycanorchestratecomplexworkflowsinamatterofminutes.

KeybenefitsofAIagents

andmultiagentAIsystems

Capability—AIagentscanautomateinteractionswithmultipletoolstoperformtasksthatstandalonelanguagemodelswerenotdesignedtoachieve(e.g.,browsinga

website,quantitativecalculations).

Productivity—WhereasstandaloneLLMsrequireconstanthumaninputandinteractiontoachievedesiredoutcomes,AIagentscanplanandcollaboratetoexecutecomplex

workflowsbasedonasingleprompt—significantlyspeedingthepathtodelivery.

Self-learning—Bytappingshort-andlong-termcontextualmemoryresourcesthatareoftenunavailableinapre-trainedlanguagemodel,AIagentscanrapidlyimprovetheiroutputqualityovertime.

Adaptability—Asneedschange,AIagentscanreasonandplannewapproaches,rapidlyreferencenewand

real-timedatasources,andengagewithotheragentstocoordinateandexecuteoutputs.

Accuracy—AkeyadvantageofmultiagentAIsystemsistheabilitytoemploy“validator”agentsthatinteractwith“creator”agentstotestandimprovequalityandreliabilityaspartofanautomatedworkflow.

Intelligence—Whenagentsspecializinginspecifictasks

worktogether—eachapplyingitsownmemorywhileutilizingitsowntoolsandreasoningcapabilities—newlevelsof

machine-poweredintelligencearemadepossible.

Transparency—MultiagentAIsystemsenhancetheabilitytoexplainAIoutputsbyshowcasinghowagentscommunicateandreasontogether,providingaclearerviewofthecollectivedecision-makingandconsensus-buildingprocess.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Transformingstrategicinsights

Nomattertheindustry,everyorganizationengagesinresearch,analysisandreporting—whetherabouteconomicconditions,customerandconstituentpreferences,policyandpricingstrategies,orothertopics.

Traditionally,theseprojectsrequireskilledhumananalyststoperformmultiplesteps,whichcanbetime-consuming,utilizingresearchandanalysistoolsalongwithin-housesubjectmatterexpertise.

Here’swhatatraditionalresearchprojecttypicallylookslike.

Analyst

Stakeholder

>

Analystidentifiestopicand

scope:Areportonthetop5

GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.

<>

AnalystAnalystselectssources,

searchesandcompiles

relevantinformation,and

organizesmaterialsandnotes.

Analyst

Analystsynthesizesthemes

andperspectives,outlinesa

planforthereportandsendstobusinessstakeholderforreview.

Analystdraftsthereportandsendstostakeholder,whoprovidesfeedback

anditerateswithanalyst.

Analystsendsapprovedreporttodesigner.

Analyst

StakeholderprovidesStakeholder

feedbackonoutline.

Analystordesignerresearchesimages,developsgraphicsanddesignsreport.

<>

<>

ProoferRisk&compliance

Analyst

orDesigner

Prooferreviewsreportand

providesfeedback,whichanalyst

and/ordesignerincorporate.

Risk&complianceprofessionalsareengagedasneeded.

Finalreportisdelivered.

Whileeffectiveandrepeatable,thisapproachis…

Time-consuming

Completingasinglereportcantakedaysorweeks,makingitdifficulttoseizeemergingopportunities.

8

Inefficient

Skilledanalystsmustperformmanyrepetitiveactivitiesthattaketheir

focusawayfromhigher-levelanalysis.

Difficulttoscale

Companiesandgovernmentagenciescanstruggletohireandretainenoughskilled,experiencedanalyststogrowtheirresearchcapacity.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

“Pleasetellmeaboutyourrequest”

DeloittehasdevelopedamultiagentAIsystemthatcanstreamlineandimproveeachstepofresearchandreporting.Here’showitworks.

“IneedtowriteareportaboutGenAItrendsinmyindustry.”

<>

Analyst

User

interface

Analystandinterfaceagentdiscussanddefinereport

scope,sourcesandtimeframefordatacollection,targetindustryandaudience,etc.Throughthisprocess,theanalystdefinesthedeliverable:Areportonthetop5GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.

<>

<>

AIAGENTTYPES

Specialized-skill&-toolagents

Role-specificagents

thatexecutespecifictaskswithinthe

workflow

Allagentscanaccess…

?Languagemodels(sharedorseparate)

?Externaltools&datasourcesasneeded

?Sharedshort-andlong-termmemory

Standard-taskagent(s)

Oneormoreagents

thatperformtaskscommontoall

workflows

Planningagentbreaksthegoalinto

subprocesses,developsaworkflowandidentifiesnecessarytoolsandspecializedagentstoexecutetheworkflow.

File

management

MultimodalPlanning

processing

Web

browsing

Topic

modeling

Reportwriting

Promptexpanding

Data

sourcing

Content

summarization

Qualityassurance

Report

formatting

Data

visualizing

Imageselection

Data

structuring

Specializedagentsexpandprompts,conductresearch,compileandanalyzeresults,identifythemesanddraftthereportoutline.Asneeded,themultimodalprocessingagenttranslatesandinterpretsdatacollectedfromvisualandaudiosources.Oncetheoutlineisapproved/adjustedbytheanalyst,additionalspecializedagentsdraftanddesignthereportcompletewithcustomizedchartsandillustrations.

Throughouttheprocess,thequalityassuranceagentchecksforaccuracy,qualityandregulatory/brandcompliance,whilethedatamanagementagentensuressourcematerialsandreportiterationsare

documentedforreference/review.

<

Analystreviewsthereportandrequestschanges.Thesystemiteratesandrefinesthereport.

Analyst

>

Finalreportisdelivered.

Inadditiontobeingeffectiveandrepeatable,thisAIagent-poweredapproachis…

Highlyscalable

Inessence,thissystemprovidesaninstantlyavailableteamofskilleddigitalworkers.

9

Efficient

Skilledprofessionalscanfocuson

validating,iteratingandrefiningthereport.

Fast

Asingle,qualityreportcanbeproducedinlessthananhour.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Effectiveandefficientworkdependsoncreativityandknowledgeaugmentedbywell-plannedprocessesandtask-appropriatetools.

That’swhatAIagentsandmultiagentAIsystemscanbringtogether.

10

Promptingforaction|HowAIagentsarereshapingthefutureofwork

11

Achievingimpactthroughtargetedusecases

OrganizationsacrossindustriesandsectorsarealreadyleveragingthepotentialofAIagentsandmultiagentsystemstotransformprocesses,improveefficiency,andexpandimpact.Let’sexplorefourusecases

thatarepossibletoday—twoinspecificindustries,andtwothatcanbeappliedinanybusiness.

1USECASE

Individualizedfinancialadvisoryandwealthmanagement

INDUSTRY:Financialservices

Financialadvisoryservicesoftenhavereliedonbroad

categorizationsofcustomersbasedonage,incomeandrisk

tolerance.Thisapproachcanoftenmissthecomplexitiesof

individualfinancialsituationsandgoals.Intoday’srapidlychangingfinanciallandscape,thereisanincreasingdemandforpersonalized,adaptivefinancialadvice.MultiagentAIsystemscananalyzediversedatasources—includingthecustomer’sfinancialhistory,real-timemarketdata,lifeeventsandevenbehavioralpatterns—tohelp

adviserscreatefinancialplansandinvestmentstrategiestailoredforthespecificindividual.AIagentscanthencontinuouslymonitorandadjustrecommendationsascircumstanceschange.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Hyperpersonalization

Customizefinancialadvicetoeachcustomer’sspecificneedsandgoals,consideringfactorsthatothermethodsmightoverlook.

Continuousfine-tuning

Automaticallyupdatefinancialplansand

strategiesinresponsetochangesinmarketconditionsorpersonalcircumstances.

Improvedcustomersatisfaction

Strengthencustomerrelationshipsby

providingmorerelevantandtimelyadvice,leadingtohigherretentionandsatisfaction.

2USECASE

Dynamicpricingand

personalizedpromotions

INDUSTRY:Consumer

Standardpricingstrategiesofteninvolvestaticmodelsthatdonotaccountforreal-timemarketconditions,customerbehaviororinventorylevels.MultiagentAIsystemscanrapidlyintegrateanalysisbasedonvastamountsofreal-timedata—suchas

competitorpricing,customerpurchasehistoryandseasonaltrends—todynamicallyadjustprices.Additionally,theycan

personalizepromotionsbasedonindividualcustomer

preferences,attributesandshoppinghabitswiththegoalof

improvingconversionratesandelevatingcustomersatisfaction.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Fasteradaptation

Adjustpricesinstantlyinresponseto

marketchanges,inventorylevelsor

customerdemand—optimizingrevenue.

Personalizedoffers

Tailorpromotionstoeachcustomer’s

preferencesandbehavior,increasingthelikelihoodofpurchase.

Greaterprofitability

Maximizemarginsandminimizediscountingbyoptimizingpricingandpromotionsonanongoingbasis.

Enhancedscalability

Servealargernumberofcustomerswithhigh-quality,personalizedadvicewithoutraisingcoststodeliver.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

12

3USECASE

TalentacquisitionandrecruitmentDOMAIN:Humanresources(HR)

Traditionalrecruitmentprocessesofteninvolvemanualresume

screening,repetitivecandidateassessmentsandsignificant

administrativework—whichcanleadtoinefficiencies.AIagents

canautomatetheend-to-endrecruitmentprocessbyusingnaturallanguageprocessingtoanalyzeresumes,assesscandidatesbasedonskillsandexperience,andconductinitialscreeninginterviewsviaGenAI-poweredavatars.Thesesystemscancollaboratewith

HRprofessionalstoensurethatqualifiedcandidatesareidentified,prioritizedandmovedthroughthehiringpipelineefficientlywhileadheringtorelevantregulations.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Increasedefficiency

AutomatetaskstoallowHRteams

tofocusonstrategicactivities,shorteningthetimetohire.

Improvedcandidatematching

Analyzeabroaderrangeofdatapointstohelpmatchcandidatestorolesmoreaccurately,

improvingthequalityofhires.

Reducedbias

Bystandardizingcandidateassessmentsand

focusingonskillsandexperience,AIagentscanhelpaddressunconsciousbiasintherecruitmentprocess.

4USECASE

Personalizedcustomersupport

DOMAIN:Customerandbeneficiaryservice

Traditionalcustomerandbeneficiarysupportsystemsoftenrelyonscriptedinteractions,whichcanfailtoresolvecomplexoruniqueinquiries—leadingtocustomerfrustrationandescalation.

Incontrast,multiagentAIsystemscanunderstandplain-languagerequestsandgeneraterelevantandnaturalresponsesthat

considerthecustomer’shistory,preferencesandreal-timecontext.Theseadvancedsystemscanhandlemanycomplexinquiries

effectively—reducingtheneedforescalationtoliveagentswhileimprovingcustomer/beneficiarysatisfaction.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Greaterconsistencyandscalability

AIagentscanoperate24/7withoutfatigue,maintainingaconsistentqualityofservicenomatterthevolumeofinquiries.

Improvedcustomerexperiences

Eachcustomerinteractioncanbeadjustedtoindividualneeds,improvingsatisfactionandengagement.

Compoundingefficiencies

Theabilitytolearnfromeachinteractioncanhelpreduceresponsetimes,improvequality,andfreeuphumanserviceagentstofocusonmorenuancedcustomerrequests.

Dynamicscalability

Handlelargevolumesofapplications,makingiteasiertomanagehiringcampaignsorrecruitformultiplerolessimultaneously.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Enablingnewwaysofworkingandnewhorizonsofinnovation

Aslanguagemodelscontinuetoevolve,AIagentsandsystemsarelikelytobecomestrategicresourcesandefficiencydriversforcorebusinessandgovernmentactivitiessuchasproductdevelopment,regulatorycompliance,customerservice,constituentengagement,organizationaldesignandothers.Weseeafutureinwhich

agentswilltransformfoundationalbusinessmodelsandentireindustries,enablingnewwaysofworking,operatinganddeliveringvalue.

That’swhyit’simportantforC-suiteandpublicserviceleaderstobeginpreparingnowforthisnextchapterintheevolutionofhuman-machinecollaborationandbusinessinnovation.

Let’sexploresomeofthenewwaysofthinkingandleadingthatshouldbeconsideredduringthistimeofrapidchange.

Strategyimplications

LeadersshouldbeginintegratingAIagentsandmultiagent

AIsystemsintotheiroverallstrategiesandfutureroadmaps.Thisinvolvesreimaginingbusinessprocesses,investinginAI

capabilities,andfosteringculturesofinnovation.OrganizationsshoulddeveloptheirownclearroadmapforAIagentadoption,identifyingkeyareaswheretheycandrivethemostvalueand

Riskimplications

AIagentsintroducenewrisksthatnecessitaterobustsecurity

andgovernancestructures.AsignificantriskispotentialbiasinAI

algorithmsandtrainingdata,whichcanleadtoinequitabledecisions.Additionally,AIagentscanbevulnerabletodatabreachesand

cyberattacks,compromisingsensitiveinformationanddataintegrity.ThecomplexityofAIsystemsalsopresentstheriskofunintended

consequencesduetoAIagentsbehavingunpredictablyormakingdecisionsnotalignedwithorganiz

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論