版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Promptingforaction
HowAIagentsarereshapingthefutureofwork
Expandedcapabilities,usecasesandenterpriseimpactfromGenerativeAI
November2024
DeloitteAIInstitute
Promptingforaction|HowAIagentsarereshapingthefutureofwork
AbouttheDeloitteAIInstitute
TheDeloitteAIInstituteTMhelpsorganizationsconnectthedifferentdimensions
ofarobust,highlydynamicandrapidlyevolvingAIecosystem.TheInstituteleads
conversationsonappliedAIinnovationacrossindustries,withcutting-edgeinsights,topromotehuman-machinecollaborationinthe“AgeofWith.”
TheDeloitteAIInstituteaimstopromoteadialogueanddevelopmentofartificial
intelligence,stimulateinnovation,andexaminebothchallengestoAIimplementation
andwaystoaddressthem.TheInstitutecollaborateswithanecosystemcomposedof
academicresearchgroups,startups,entrepreneurs,innovators,matureAIproductleadersandAIvisionariestoexplorekeyareasofartificialintelligenceincludingrisks,policies,
ethics,futureofworkandtalent,andappliedAIusecases.CombinedwithDeloitte’sdeepknowledgeandexperienceinartificialintelligenceapplications,theInstitutehelpsmakesenseofthiscomplexecosystem,andasaresultdeliversimpactfulperspectivestohelporganizationssucceedbymakinginformedAIdecisions.
NomatterwhatstageoftheAIjourneyyou’rein,whetheryou’reaboardmemberora
C-suiteleaderdrivingstrategyforyourorganizationorahands-ondatascientistbringinganAIstrategytolife,theInstitutecanhelpyoulearnmoreabouthoworganizationsacrosstheworldareleveragingAIforacompetitiveadvantage.VisitusattheDeloitteAIInstitutetoaccessthefullbodyofourwork,subscribetoourpodcastsandnewsletter,andjoinusatourmeetupsandliveevents.Let’sexplorethefutureofAItogether.
/us/AIInstitute
2
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Content
Keytakeaways
?AIagentsarereshapingindustriesbyexpandingthepotentialapplicationsofGenerativeAI(GenAI)andtypicallanguagemodels.
?MultiagentAIsystemscansignificantlyenhancethequalityofoutputsandcomplexityofworkperformedbysingleAIagents.
?Forward-thinkingbusinessesandgovernmentsarealreadyimplementingAIagentsandmultiagentAIsystemsacrossarangeofusecases.
?Executiveleadersshouldmakemovesnowtoprepareforandembracethisnexteraofintelligentorganizationaltransformation.
Introduction4
AIagents:5
Whatmakesthemdifferent—andwhytheymatter
MultiagentAIsystems:7
AmplifyingthepotentialofAIagents
KeybenefitsofAIagentsandmultiagentAIsystems:7
AdvantagesthatAIagentsareunlockingfororganizationstoday
Transformingstrategicinsights:8
Areal-worldexampleofamultiagentAIsystem
Achievingimpactthroughtargetedusecases:11
HowAIagentsarechangingindustriesandenterprisedomains
Enablingnewwaysofworkingandnewhorizonsofinnovation:13
Implicationsforstrategy,risk,talent,businessprocessesandtechnology
Theroadahead:15
WhatweexpectasAIagentscontinuetoevolve
Chartingacourseintothenexteraoforganizationaltransformation:16
Recommendedactionsforleaderstotakenow
Getintouch&Endnotes17
3
Promptingforaction|HowAIagentsarereshapingthefutureofwork
4
Introduction
Howcanweoperatefasterandmoreefficiently?
Thisquestionhasalwaysbeenattheforefrontofstrategic
agendas—butGenerativeAI(GenAI)ishelpingunlocknew
answers.Withitsabilitytoproducenoveloutputsfromplain-
languageprompts,GenAIhasenabledenterprisestosignificantlyenhancespeedandproductivityacrossarangeofbusinesstasks.However,usecasesfortypicallanguagemodelshaveonlyjust
beguntoshowGenAI’stransformativepotential.InthistimeofrapidAIevolution,it’stimetothinkbiggerandbolder:from
streamliningroutinetaskstoredesigningentireworkflows.
Nowthequestionforbusinessandgovernmentleadersisbecoming:
HowcanwerethinkourbusinessprocesseswithGenAI?
Largelanguagemodels(LLMs)andGenAI-poweredtoolsusedbymostorganizationstodayserveashelpfulassistants:Ahumanworkerentersaprompt,GenAIquicklyproducesanoutput.
However,thisinteractionislargelytransactionalandlimitedinscope.
WhatifGenAIcouldbemorelikeaskilledcollaboratorthatwillnotonlyrespondtorequestsbutalsoplanthewholeprocesstohelpsolveacomplexneed?WhatifGenAIcouldalsotapintothenecessarydata,digitaltoolsandcontextualknowledgetoorchestratetheprocessendtoend,autonomously?
Adaptorfallbehind
Attheendof2023,nearly1in6
surveyedbusinessleaderssaid
GenAIhadalreadytransformedtheirbusinesses1
ThisvisionisbecomingarealitywiththeemergenceofAIagentsandmultiagentAIsystems—apowerfuladvancementinwhat’spossiblethroughhuman-AIpartnership.LeadingcompaniesandgovernmentagenciesarealreadyseeingthevalueofAIagentsandputtingthemintopractice.
Inthispaper,weexplorewhatmakesAIagentssogroundbreaking.Wethenrevealhowtheyarereshapingindustries,including
governmentandpublicservices,byenablingnewusecases,
enhancingautomationandacceleratingthefutureofintelligentorganizationaltransformation.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
AIagents:Whatmakesthemdifferent—andwhytheymatter
TograspthepotentialvalueofAIagentsandtheirrolein
expandingtheautomationhorizon,itisimportanttounderstandhowtheydifferfromthelanguagemodelsandGenAIapplicationsfamiliartobusinessleaderstoday.
AIagentsarereasoningenginesthatcanunderstandcontext,planworkflows,
connecttoexternaltoolsanddata,andexecuteactionstoachieveadefinedgoal.
WhilethismaysoundbroadlylikewhatstandaloneLLMsor
GenAIapplicationscando,therearekeydistinctionsthat
makeAIagentssignificantlymorepowerful.(Seetable,page6.)
TypicalLLM-poweredchatbots,forexample,usuallyhavelimitedabilitytounderstandmultistepprompts—muchlesstoplanandexecutewholeworkflowsfromasingleprompt.Inessence,they
conformtothe“input-output”paradigmoftraditionalapplicationsandcangetconfusedwhenpresentedwitharequestthatmust
bedeconstructedintomultiplesmallertasks.Theyalsostruggletoreasonoversequences,suchascompositionaltasksthatrequireconsiderationoftemporalandtextualcontexts.Theselimitationsareevenmorepronouncedwhenusingsmalllanguagemodels
(SLMs),which,becausetheyaretrainedonsmallervolumesofdata,typicallysacrificedepthofknowledgeand/orqualityofoutputsinfavorofimprovedcomputationalcostandspeed.
Asaresult,earlyGenAIusecaseshavemostlybeenlimitedtostandaloneapplicationssuchasgeneratingpersonalizedadsbasedonacustomer’ssearchhistory,reviewingcontractsandlegaldocumentstoidentifypotentialregulatoryconcerns,
orpredictingmolecularbehavioranddruginteractionsinpharmaceuticalresearch.
AIagentsexcelinaddressingtheselimitationswhilealso
leveragingcapabilitiesofdomain-andtask-specificdigitaltoolstocompletemorecomplicatedtaskseffectively.Forexample,
AIagentsequippedwithlong-termmemorycanremember
customerandconstituentinteractions—includingemails,chatsessionsandphonecalls—acrossdigitalchannels,continuouslylearningandadjustingpersonalizedrecommendations.This
contrastswithtypicalLLMsandSLMs,whichareoftenlimitedtosession-specificinformation.Moreover,AIagentscanautomateend-to-endprocesses,particularlythoserequiringsophisticatedreasoning,planningandexecution.
AIagentsareopeningnewpossibilitiestodriveenterprise
productivityandprogramdeliverythroughbusinessprocess
automation.UsecasesthatwereoncethoughttoocomplicatedforGenAIcannowbeenabledatscale—securelyandefficiently.
Inotherwords:AIagentsdon’tjustinteract.Theymoreeffectivelyreasonandactonbehalfoftheuser.
5
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Anewparadigmfor
human-machinecollaboration
Throughtheirabilitytoreason,plan,rememberandact,
AIagentsaddresskeylimitationsoftypicallanguagemodels.
AIagents
Typicallanguagemodels
Automateentireworkflows/processes
Createandexecutemultistepplanstoachieveauser’sgoal,adjustingactionsbasedon
real-timefeedback
Utilizeshort-termandlong-termmemorytolearnfromprevioususerinteractionsand
providepersonalizedresponses;Memorymaybesharedacrossmultipleagentsinasystem
AugmentinherentlanguagemodelcapabilitieswithAPIsandtools(e.g.,dataextractors,imageselectors,searchAPIs)toperformtasks
Adjustdynamicallytonewinformationandreal-timeknowledgesources
Canleveragetask-specificcapabilities,knowledgeandmemorytovalidateandimprovetheirownoutputsandthoseofotheragentsinasystem
Usecasescope
Planning
Memory&fine-tuning
Tool
integration
Data
integration
Accuracy
Automatetasks
Arenotcapableofplanningororchestratingworkflows
Donotretainmemoryandhavelimitedfine-tuningcapabilities
Arenotinherentlydesignedtointegratewithexternaltoolsorsystems
Relyonstaticknowledgewithfixedtrainingcutoffdates
Typicallylackself-assessmentcapabilitiesandarelimitedtoprobabilisticreasoningbasedontrainingdata
6
Promptingforaction|HowAIagentsarereshapingthefutureofwork
7
MultiagentAIsystems:
AmplifyingthepotentialofAIagents
WhileindividualAIagentscanoffervaluableenhancements,the
trulytransformativepowerofAIagentscomeswhentheywork
togetherwithotheragents.Suchmultiagentsystemsleverage
specializedroles,enablingorganizationstoautomateandoptimizeprocessesthatindividualagentsmightstruggletohandlealone.
MultiagentAIsystemsemploy
multiple,role-specificAIagentsto
understandrequests,planworkflows,coordinaterole-specificagents,
streamlineactions,collaboratewithhumansandvalidateoutputs.
MultiagentAIsystemstypicallyinvolvestandard-taskagents(e.g.,userinterfaceanddatamanagementagents)workingwithspecialized-skilland-toolagents(e.g.,dataextractoror
imageinterpreteragents)toachieveagoalspecifiedbyauser.
AtthecoreofeveryAIagentisalanguagemodelthatprovides
asemanticunderstandingoflanguageandcontext—but
dependingontheusecase,thesameordifferentlanguagemodelsmaybeusedbyagentsinasystem.Thisapproachcanallowsomeagentstoshareknowledgewhileothersvalidateoutputsacross
thesystem—improvingqualityandconsistencyintheprocess.
Thatpotentialisfurtherenhancedbyprovidingagentswithsharedshort-andlong-termmemoryresourcesthatreducethe
needforhumanpromptingintheplanning,validationanditerationstagesofagivenprojectorusecase.
Thisconceptextendswhat’spossiblewithindividualAIagents
bytakingateamoragencyapproach.Bydecomposingadetailedprocessintomultipletasks,assigningtaskstoagentsoptimizedtoperformthetasks,andorchestratingagentandhuman
collaborationateachstageoftheworkflow,thistypeofsystemhasprovenmuchmorelikelytoproducehigherquality,fasterandmoretrustworthyoutcomes.2,3
Inotherwords:MultiagentAIsystemsdon’tjustreason
andactonbehalfoftheuser.Theycanorchestratecomplexworkflowsinamatterofminutes.
KeybenefitsofAIagents
andmultiagentAIsystems
Capability—AIagentscanautomateinteractionswithmultipletoolstoperformtasksthatstandalonelanguagemodelswerenotdesignedtoachieve(e.g.,browsinga
website,quantitativecalculations).
Productivity—WhereasstandaloneLLMsrequireconstanthumaninputandinteractiontoachievedesiredoutcomes,AIagentscanplanandcollaboratetoexecutecomplex
workflowsbasedonasingleprompt—significantlyspeedingthepathtodelivery.
Self-learning—Bytappingshort-andlong-termcontextualmemoryresourcesthatareoftenunavailableinapre-trainedlanguagemodel,AIagentscanrapidlyimprovetheiroutputqualityovertime.
Adaptability—Asneedschange,AIagentscanreasonandplannewapproaches,rapidlyreferencenewand
real-timedatasources,andengagewithotheragentstocoordinateandexecuteoutputs.
Accuracy—AkeyadvantageofmultiagentAIsystemsistheabilitytoemploy“validator”agentsthatinteractwith“creator”agentstotestandimprovequalityandreliabilityaspartofanautomatedworkflow.
Intelligence—Whenagentsspecializinginspecifictasks
worktogether—eachapplyingitsownmemorywhileutilizingitsowntoolsandreasoningcapabilities—newlevelsof
machine-poweredintelligencearemadepossible.
Transparency—MultiagentAIsystemsenhancetheabilitytoexplainAIoutputsbyshowcasinghowagentscommunicateandreasontogether,providingaclearerviewofthecollectivedecision-makingandconsensus-buildingprocess.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Transformingstrategicinsights
Nomattertheindustry,everyorganizationengagesinresearch,analysisandreporting—whetherabouteconomicconditions,customerandconstituentpreferences,policyandpricingstrategies,orothertopics.
Traditionally,theseprojectsrequireskilledhumananalyststoperformmultiplesteps,whichcanbetime-consuming,utilizingresearchandanalysistoolsalongwithin-housesubjectmatterexpertise.
Here’swhatatraditionalresearchprojecttypicallylookslike.
Analyst
Stakeholder
>
Analystidentifiestopicand
scope:Areportonthetop5
GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.
<>
AnalystAnalystselectssources,
searchesandcompiles
relevantinformation,and
organizesmaterialsandnotes.
Analyst
Analystsynthesizesthemes
andperspectives,outlinesa
planforthereportandsendstobusinessstakeholderforreview.
Analystdraftsthereportandsendstostakeholder,whoprovidesfeedback
anditerateswithanalyst.
Analystsendsapprovedreporttodesigner.
Analyst
StakeholderprovidesStakeholder
feedbackonoutline.
Analystordesignerresearchesimages,developsgraphicsanddesignsreport.
<>
<>
ProoferRisk&compliance
Analyst
orDesigner
Prooferreviewsreportand
providesfeedback,whichanalyst
and/ordesignerincorporate.
Risk&complianceprofessionalsareengagedasneeded.
Finalreportisdelivered.
Whileeffectiveandrepeatable,thisapproachis…
像
Time-consuming
Completingasinglereportcantakedaysorweeks,makingitdifficulttoseizeemergingopportunities.
8
Inefficient
Skilledanalystsmustperformmanyrepetitiveactivitiesthattaketheir
focusawayfromhigher-levelanalysis.
Difficulttoscale
Companiesandgovernmentagenciescanstruggletohireandretainenoughskilled,experiencedanalyststogrowtheirresearchcapacity.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
“Pleasetellmeaboutyourrequest”
DeloittehasdevelopedamultiagentAIsystemthatcanstreamlineandimproveeachstepofresearchandreporting.Here’showitworks.
“IneedtowriteareportaboutGenAItrendsinmyindustry.”
<>
Analyst
User
interface
Analystandinterfaceagentdiscussanddefinereport
scope,sourcesandtimeframefordatacollection,targetindustryandaudience,etc.Throughthisprocess,theanalystdefinesthedeliverable:Areportonthetop5GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.
<>
<>
AIAGENTTYPES
Specialized-skill&-toolagents
Role-specificagents
thatexecutespecifictaskswithinthe
workflow
Allagentscanaccess…
?Languagemodels(sharedorseparate)
?Externaltools&datasourcesasneeded
?Sharedshort-andlong-termmemory
Standard-taskagent(s)
Oneormoreagents
thatperformtaskscommontoall
workflows
Planningagentbreaksthegoalinto
subprocesses,developsaworkflowandidentifiesnecessarytoolsandspecializedagentstoexecutetheworkflow.
File
management
MultimodalPlanning
processing
Web
browsing
Topic
modeling
Reportwriting
Promptexpanding
Data
sourcing
Content
summarization
Qualityassurance
Report
formatting
Data
visualizing
Imageselection
Data
structuring
Specializedagentsexpandprompts,conductresearch,compileandanalyzeresults,identifythemesanddraftthereportoutline.Asneeded,themultimodalprocessingagenttranslatesandinterpretsdatacollectedfromvisualandaudiosources.Oncetheoutlineisapproved/adjustedbytheanalyst,additionalspecializedagentsdraftanddesignthereportcompletewithcustomizedchartsandillustrations.
Throughouttheprocess,thequalityassuranceagentchecksforaccuracy,qualityandregulatory/brandcompliance,whilethedatamanagementagentensuressourcematerialsandreportiterationsare
documentedforreference/review.
<
Analystreviewsthereportandrequestschanges.Thesystemiteratesandrefinesthereport.
Analyst
>
Finalreportisdelivered.
Inadditiontobeingeffectiveandrepeatable,thisAIagent-poweredapproachis…
Highlyscalable
Inessence,thissystemprovidesaninstantlyavailableteamofskilleddigitalworkers.
9
Efficient
Skilledprofessionalscanfocuson
validating,iteratingandrefiningthereport.
Fast
Asingle,qualityreportcanbeproducedinlessthananhour.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Effectiveandefficientworkdependsoncreativityandknowledgeaugmentedbywell-plannedprocessesandtask-appropriatetools.
That’swhatAIagentsandmultiagentAIsystemscanbringtogether.
10
Promptingforaction|HowAIagentsarereshapingthefutureofwork
11
Achievingimpactthroughtargetedusecases
OrganizationsacrossindustriesandsectorsarealreadyleveragingthepotentialofAIagentsandmultiagentsystemstotransformprocesses,improveefficiency,andexpandimpact.Let’sexplorefourusecases
thatarepossibletoday—twoinspecificindustries,andtwothatcanbeappliedinanybusiness.
1USECASE
Individualizedfinancialadvisoryandwealthmanagement
INDUSTRY:Financialservices
Financialadvisoryservicesoftenhavereliedonbroad
categorizationsofcustomersbasedonage,incomeandrisk
tolerance.Thisapproachcanoftenmissthecomplexitiesof
individualfinancialsituationsandgoals.Intoday’srapidlychangingfinanciallandscape,thereisanincreasingdemandforpersonalized,adaptivefinancialadvice.MultiagentAIsystemscananalyzediversedatasources—includingthecustomer’sfinancialhistory,real-timemarketdata,lifeeventsandevenbehavioralpatterns—tohelp
adviserscreatefinancialplansandinvestmentstrategiestailoredforthespecificindividual.AIagentscanthencontinuouslymonitorandadjustrecommendationsascircumstanceschange.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Hyperpersonalization
Customizefinancialadvicetoeachcustomer’sspecificneedsandgoals,consideringfactorsthatothermethodsmightoverlook.
Continuousfine-tuning
Automaticallyupdatefinancialplansand
strategiesinresponsetochangesinmarketconditionsorpersonalcircumstances.
Improvedcustomersatisfaction
Strengthencustomerrelationshipsby
providingmorerelevantandtimelyadvice,leadingtohigherretentionandsatisfaction.
2USECASE
Dynamicpricingand
personalizedpromotions
INDUSTRY:Consumer
Standardpricingstrategiesofteninvolvestaticmodelsthatdonotaccountforreal-timemarketconditions,customerbehaviororinventorylevels.MultiagentAIsystemscanrapidlyintegrateanalysisbasedonvastamountsofreal-timedata—suchas
competitorpricing,customerpurchasehistoryandseasonaltrends—todynamicallyadjustprices.Additionally,theycan
personalizepromotionsbasedonindividualcustomer
preferences,attributesandshoppinghabitswiththegoalof
improvingconversionratesandelevatingcustomersatisfaction.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Fasteradaptation
Adjustpricesinstantlyinresponseto
marketchanges,inventorylevelsor
customerdemand—optimizingrevenue.
Personalizedoffers
Tailorpromotionstoeachcustomer’s
preferencesandbehavior,increasingthelikelihoodofpurchase.
Greaterprofitability
Maximizemarginsandminimizediscountingbyoptimizingpricingandpromotionsonanongoingbasis.
Enhancedscalability
Servealargernumberofcustomerswithhigh-quality,personalizedadvicewithoutraisingcoststodeliver.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
12
3USECASE
TalentacquisitionandrecruitmentDOMAIN:Humanresources(HR)
Traditionalrecruitmentprocessesofteninvolvemanualresume
screening,repetitivecandidateassessmentsandsignificant
administrativework—whichcanleadtoinefficiencies.AIagents
canautomatetheend-to-endrecruitmentprocessbyusingnaturallanguageprocessingtoanalyzeresumes,assesscandidatesbasedonskillsandexperience,andconductinitialscreeninginterviewsviaGenAI-poweredavatars.Thesesystemscancollaboratewith
HRprofessionalstoensurethatqualifiedcandidatesareidentified,prioritizedandmovedthroughthehiringpipelineefficientlywhileadheringtorelevantregulations.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Increasedefficiency
AutomatetaskstoallowHRteams
tofocusonstrategicactivities,shorteningthetimetohire.
Improvedcandidatematching
Analyzeabroaderrangeofdatapointstohelpmatchcandidatestorolesmoreaccurately,
improvingthequalityofhires.
Reducedbias
Bystandardizingcandidateassessmentsand
focusingonskillsandexperience,AIagentscanhelpaddressunconsciousbiasintherecruitmentprocess.
4USECASE
Personalizedcustomersupport
DOMAIN:Customerandbeneficiaryservice
Traditionalcustomerandbeneficiarysupportsystemsoftenrelyonscriptedinteractions,whichcanfailtoresolvecomplexoruniqueinquiries—leadingtocustomerfrustrationandescalation.
Incontrast,multiagentAIsystemscanunderstandplain-languagerequestsandgeneraterelevantandnaturalresponsesthat
considerthecustomer’shistory,preferencesandreal-timecontext.Theseadvancedsystemscanhandlemanycomplexinquiries
effectively—reducingtheneedforescalationtoliveagentswhileimprovingcustomer/beneficiarysatisfaction.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Greaterconsistencyandscalability
AIagentscanoperate24/7withoutfatigue,maintainingaconsistentqualityofservicenomatterthevolumeofinquiries.
Improvedcustomerexperiences
Eachcustomerinteractioncanbeadjustedtoindividualneeds,improvingsatisfactionandengagement.
Compoundingefficiencies
Theabilitytolearnfromeachinteractioncanhelpreduceresponsetimes,improvequality,andfreeuphumanserviceagentstofocusonmorenuancedcustomerrequests.
Dynamicscalability
Handlelargevolumesofapplications,makingiteasiertomanagehiringcampaignsorrecruitformultiplerolessimultaneously.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Enablingnewwaysofworkingandnewhorizonsofinnovation
Aslanguagemodelscontinuetoevolve,AIagentsandsystemsarelikelytobecomestrategicresourcesandefficiencydriversforcorebusinessandgovernmentactivitiessuchasproductdevelopment,regulatorycompliance,customerservice,constituentengagement,organizationaldesignandothers.Weseeafutureinwhich
agentswilltransformfoundationalbusinessmodelsandentireindustries,enablingnewwaysofworking,operatinganddeliveringvalue.
That’swhyit’simportantforC-suiteandpublicserviceleaderstobeginpreparingnowforthisnextchapterintheevolutionofhuman-machinecollaborationandbusinessinnovation.
Let’sexploresomeofthenewwaysofthinkingandleadingthatshouldbeconsideredduringthistimeofrapidchange.
Strategyimplications
LeadersshouldbeginintegratingAIagentsandmultiagent
AIsystemsintotheiroverallstrategiesandfutureroadmaps.Thisinvolvesreimaginingbusinessprocesses,investinginAI
capabilities,andfosteringculturesofinnovation.OrganizationsshoulddeveloptheirownclearroadmapforAIagentadoption,identifyingkeyareaswheretheycandrivethemostvalueand
Riskimplications
AIagentsintroducenewrisksthatnecessitaterobustsecurity
andgovernancestructures.AsignificantriskispotentialbiasinAI
algorithmsandtrainingdata,whichcanleadtoinequitabledecisions.Additionally,AIagentscanbevulnerabletodatabreachesand
cyberattacks,compromisingsensitiveinformationanddataintegrity.ThecomplexityofAIsystemsalsopresentstheriskofunintended
consequencesduetoAIagentsbehavingunpredictablyormakingdecisionsnotalignedwithorganiz
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《大學(xué)生聯(lián)誼晚會》課件
- 藥物篩選與開發(fā)-洞察分析
- 細(xì)節(jié)處理在自動駕駛中的應(yīng)用-洞察分析
- 虛擬現(xiàn)實(shí)地理信息平臺構(gòu)建-洞察分析
- 《服務(wù)器管理技術(shù)》課件
- 無人駕駛技術(shù)在特殊用途車輛中的應(yīng)用-洞察分析
- 月球巖石地球化學(xué)研究-洞察分析
- 元宇宙社交互動模式-洞察分析
- 替卡西林藥效學(xué)研究-洞察分析
- 異常檢測的深度學(xué)習(xí)模型優(yōu)化-洞察分析
- 2024年濟(jì)寧能源發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- MOOC 天氣學(xué)-國防科技大學(xué) 中國大學(xué)慕課答案
- 汽車品牌文化(吉林聯(lián)盟)智慧樹知到期末考試答案2024年
- 基于ECharts的數(shù)據(jù)可視化應(yīng)用
- 2023年4月自考00243民事訴訟法學(xué)試題及答案
- EPC工程總承包項(xiàng)目項(xiàng)目管理要點(diǎn)
- 人教鄂教版小學(xué)科學(xué)六年級下冊全冊分層練習(xí)
- 高三化學(xué)復(fù)習(xí)知識清單(通用版) 知識清單31 晶體結(jié)構(gòu)與性質(zhì)
- 簡明版工程轉(zhuǎn)包合同樣本
- 客戶忠誠度競爭力分析
- 30道醫(yī)院眼科醫(yī)生崗位高頻面試問題附考察點(diǎn)及參考回答
評論
0/150
提交評論