下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第2頁,共2頁西安郵電大學(xué)
《機(jī)器視覺》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是指確定物體在三維空間中的位置和方向。以下關(guān)于姿態(tài)估計(jì)的說法,錯(cuò)誤的是()A.姿態(tài)估計(jì)可以通過單目相機(jī)、雙目相機(jī)或深度相機(jī)來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法在姿態(tài)估計(jì)任務(wù)中表現(xiàn)出了較高的精度C.姿態(tài)估計(jì)在機(jī)器人操作、增強(qiáng)現(xiàn)實(shí)等領(lǐng)域有著重要的應(yīng)用價(jià)值D.姿態(tài)估計(jì)的結(jié)果總是非常精確,不受物體形狀和遮擋的影響2、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場(chǎng)足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動(dòng)態(tài)信息對(duì)比賽分析的價(jià)值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢(shì)D.比賽場(chǎng)地的光照和攝像機(jī)視角對(duì)計(jì)算機(jī)視覺分析的結(jié)果沒有影響3、當(dāng)進(jìn)行圖像的目標(biāo)計(jì)數(shù)任務(wù)時(shí),假設(shè)要統(tǒng)計(jì)一張圖像中某種物體的數(shù)量,例如統(tǒng)計(jì)羊群中的羊的數(shù)量。以下哪種方法可能更準(zhǔn)確地完成計(jì)數(shù)任務(wù)?()A.基于深度學(xué)習(xí)的目標(biāo)計(jì)數(shù)模型B.手動(dòng)逐個(gè)計(jì)數(shù)C.估計(jì)圖像中物體的平均大小,然后計(jì)算總面積來推算數(shù)量D.隨機(jī)猜測(cè)物體的數(shù)量4、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺可以通過攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語義分割D.計(jì)算機(jī)視覺需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性5、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是確定物體在三維空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,哪一項(xiàng)是不正確的?()A.基于視覺的姿態(tài)估計(jì)可以通過分析物體在圖像中的特征點(diǎn)來計(jì)算其姿態(tài)B.可以結(jié)合多個(gè)攝像頭的圖像信息,提高姿態(tài)估計(jì)的精度和魯棒性C.姿態(tài)估計(jì)通常需要先對(duì)物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響6、在計(jì)算機(jī)視覺的視覺跟蹤任務(wù)中,目標(biāo)在運(yùn)動(dòng)過程中可能會(huì)發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準(zhǔn)確性,以下哪種策略可能是有效的?()A.模型更新機(jī)制B.多特征融合C.抗遮擋處理D.以上都是7、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間或視角拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)8、計(jì)算機(jī)視覺中的車牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車牌識(shí)別,以下關(guān)于車牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測(cè)和字符分割的方法對(duì)車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識(shí)別出字符,但對(duì)車牌的傾斜和光照不均敏感C.車牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運(yùn)行D.車牌識(shí)別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)9、計(jì)算機(jī)視覺中的場(chǎng)景理解是理解圖像或視頻中的場(chǎng)景內(nèi)容和語義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場(chǎng)景理解方法的描述,哪一項(xiàng)是不正確的?()A.可以通過對(duì)象檢測(cè)、語義分割和場(chǎng)景分類等任務(wù)來實(shí)現(xiàn)場(chǎng)景理解B.結(jié)合上下文信息和先驗(yàn)知識(shí)能夠提高場(chǎng)景理解的準(zhǔn)確性C.深度學(xué)習(xí)模型能夠?qū)W習(xí)場(chǎng)景中的全局特征和關(guān)系,實(shí)現(xiàn)對(duì)場(chǎng)景的深入理解D.場(chǎng)景理解可以在沒有任何先驗(yàn)知識(shí)和上下文信息的情況下,準(zhǔn)確地推斷出場(chǎng)景的語義10、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,需要應(yīng)對(duì)姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個(gè)能夠在不同環(huán)境下準(zhǔn)確識(shí)別人臉的系統(tǒng),以下哪種人臉識(shí)別方法在處理這些變化時(shí)具有更高的準(zhǔn)確性和魯棒性?()A.基于特征點(diǎn)的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別D.基于幾何形狀的人臉識(shí)別11、視頻理解是計(jì)算機(jī)視覺中的一個(gè)具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時(shí)間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時(shí)具有優(yōu)勢(shì)C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場(chǎng)景下的視頻內(nèi)容,不存在任何挑戰(zhàn)12、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無損壓縮方法,如PNGC.不進(jìn)行任何壓縮,直接存儲(chǔ)原始圖像D.隨機(jī)刪除圖像中的部分像素13、在計(jì)算機(jī)視覺中,圖像分類是一項(xiàng)基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動(dòng)物的圖像數(shù)據(jù)集,需要訓(xùn)練一個(gè)模型來準(zhǔn)確區(qū)分不同的動(dòng)物類別。在選擇圖像分類模型時(shí),以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時(shí)表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)14、在計(jì)算機(jī)視覺的圖像去霧任務(wù)中,假設(shè)要去除一張有霧圖像中的霧氣,恢復(fù)清晰的場(chǎng)景。以下關(guān)于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準(zhǔn)確估計(jì)霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學(xué)習(xí)的去霧方法能夠自動(dòng)學(xué)習(xí)霧的特征,但對(duì)濃霧的處理能力有限C.圖像去霧后,顏色和對(duì)比度會(huì)發(fā)生嚴(yán)重失真,影響視覺效果D.所有的圖像去霧方法都能夠在各種復(fù)雜的霧天條件下取得理想的效果15、對(duì)于圖像分類任務(wù),假設(shè)需要對(duì)大量的自然風(fēng)景圖像進(jìn)行分類,包括山脈、森林、海灘和沙漠等場(chǎng)景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準(zhǔn)確性和泛化能力,以下哪種策略是至關(guān)重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如旋轉(zhuǎn)、翻轉(zhuǎn)和顏色變換B.只使用少量具有代表性的圖像進(jìn)行訓(xùn)練C.選擇簡(jiǎn)單的分類模型,避免過擬合D.不進(jìn)行任何預(yù)處理,直接使用原始圖像訓(xùn)練模型二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述圖像的邊緣檢測(cè)算法。2、(本題5分)計(jì)算機(jī)視覺中如何進(jìn)行拍賣行業(yè)中的物品鑒定?3、(本題5分)簡(jiǎn)述圖像去噪的常見方法。4、(本題5分)解釋計(jì)算機(jī)視覺在軌道交通中的作用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于深度學(xué)習(xí)的圖像修復(fù)技術(shù),修復(fù)老舊照片中的損壞部分。2、(本題5分)基于深度學(xué)習(xí)的圖像超分辨率重建技術(shù),提高監(jiān)控圖像的清晰度。3、(本題5分)對(duì)電影中的特效鏡頭與真實(shí)場(chǎng)景的融合度進(jìn)行視覺分析。4、(本題5分)通過圖像分類算法,對(duì)不同風(fēng)格的珠寶設(shè)計(jì)圖像進(jìn)行分類。5、(本題5分)利用深度學(xué)習(xí)算法,對(duì)不同種類的零食圖像進(jìn)行分類。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)以一個(gè)時(shí)尚品牌的時(shí)尚博客頁面設(shè)計(jì)為例,分析其視覺效果、時(shí)尚內(nèi)容展示和互動(dòng)功能,討論如何吸引讀者的關(guān)注和提高品牌的影響力。2、(本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019-2025年中國(guó)羊毛紗行業(yè)市場(chǎng)調(diào)研分析及投資戰(zhàn)略咨詢報(bào)告
- 高一學(xué)生學(xué)習(xí)計(jì)劃15篇
- 一年級(jí)語文拼音教案
- 我的學(xué)習(xí)計(jì)劃15篇
- 《童年》讀后感(匯編15篇)
- 小班戶外活動(dòng)親子踩墊子游戲教案
- 初一政治教學(xué)計(jì)劃范文集錦六篇
- 公司年會(huì)活動(dòng)方案模板錦集六篇
- 乒乓球比賽作文300字集合10篇
- 冀教版四年級(jí)科學(xué)上冊(cè)第一單元《物體的運(yùn)動(dòng)》教案
- GB/T 45016-2024發(fā)動(dòng)機(jī)附件帶傳動(dòng)系統(tǒng)機(jī)械式自動(dòng)張緊輪試驗(yàn)方法
- 南寧市三好學(xué)生主要事跡(8篇)
- 2024版玻璃幕墻工程材料采購(gòu)合同2篇
- 2025年婦產(chǎn)科工作計(jì)劃
- 《寒假安全教育班會(huì)》課件模板四套
- (T8聯(lián)考)2025屆高三部分重點(diǎn)中學(xué)12月第一次聯(lián)考 生物試卷(含答案詳解)
- JGJ46-2024 建筑與市政工程施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
- 報(bào)關(guān)稅費(fèi)代繳服務(wù)合同
- 僅銷售預(yù)包裝食品經(jīng)營(yíng)者備案信息采集表
- 信息化工程建設(shè)項(xiàng)目可行性研究報(bào)告編制要求
- 2024湖南株洲攸縣城關(guān)國(guó)家糧食儲(chǔ)備庫員工招聘2人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
評(píng)論
0/150
提交評(píng)論