江南大學(xué)《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
江南大學(xué)《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
江南大學(xué)《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
江南大學(xué)《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
江南大學(xué)《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江南大學(xué)

《人工智能》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成和數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓(xùn)練過程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個(gè)強(qiáng)大就能生成好的圖像C.GAN可以通過不斷的對(duì)抗訓(xùn)練,學(xué)習(xí)到真實(shí)數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域的數(shù)據(jù)生成2、在一個(gè)利用人工智能進(jìn)行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個(gè)方面的優(yōu)化可能是關(guān)鍵的?()A.知識(shí)庫的構(gòu)建和更新B.自然語言處理模型的改進(jìn)C.對(duì)話流程的設(shè)計(jì)D.以上都是3、人工智能中的元學(xué)習(xí)技術(shù)旨在讓模型能夠快速適應(yīng)新的任務(wù)和數(shù)據(jù)分布。假設(shè)要開發(fā)一個(gè)能夠在不同領(lǐng)域的小樣本學(xué)習(xí)任務(wù)中表現(xiàn)良好的元學(xué)習(xí)模型,以下哪種元學(xué)習(xí)方法在泛化能力和學(xué)習(xí)效率方面具有更大的潛力?()A.基于模型的元學(xué)習(xí)B.基于優(yōu)化的元學(xué)習(xí)C.基于度量的元學(xué)習(xí)D.以上方法結(jié)合使用4、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過傳感器和數(shù)據(jù)分析實(shí)現(xiàn)對(duì)農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個(gè)技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)5、在人工智能的發(fā)展中,機(jī)器學(xué)習(xí)是一個(gè)重要的分支。假設(shè)一個(gè)醫(yī)療團(tuán)隊(duì)想要利用機(jī)器學(xué)習(xí)來預(yù)測(cè)某種疾病的發(fā)病風(fēng)險(xiǎn),他們收集了大量患者的基因數(shù)據(jù)、生活習(xí)慣、病史等多維度信息。在選擇機(jī)器學(xué)習(xí)算法時(shí),需要考慮數(shù)據(jù)的特點(diǎn)、模型的復(fù)雜度和預(yù)測(cè)的準(zhǔn)確性等因素。以下哪種機(jī)器學(xué)習(xí)算法可能最適合這個(gè)任務(wù)?()A.決策樹算法,通過對(duì)特征的逐步劃分進(jìn)行預(yù)測(cè)B.線性回歸算法,建立變量之間的線性關(guān)系進(jìn)行預(yù)測(cè)C.支持向量機(jī)算法,尋找最優(yōu)分類超平面進(jìn)行分類預(yù)測(cè)D.樸素貝葉斯算法,基于概率計(jì)算進(jìn)行分類6、在自然語言處理領(lǐng)域,情感分析是一項(xiàng)常見的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的情感傾向是積極、消極還是中性??紤]到語言的復(fù)雜性和多義性,以及評(píng)論中可能存在的諷刺、反語等情況,以下哪種方法在進(jìn)行情感分析時(shí)更為有效?()A.基于詞典的方法,通過查找情感詞來判斷情感B.基于規(guī)則的方法,制定一系列的規(guī)則來判斷情感C.深度學(xué)習(xí)方法,如使用卷積神經(jīng)網(wǎng)絡(luò)對(duì)文本進(jìn)行建模D.人工閱讀和判斷,確保準(zhǔn)確性7、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型的協(xié)同訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓(xùn)練一個(gè)模型。以下哪種聯(lián)邦學(xué)習(xí)算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學(xué)習(xí)B.縱向聯(lián)邦學(xué)習(xí)C.聯(lián)邦遷移學(xué)習(xí)D.以上框架根據(jù)具體情況選擇9、在自然語言處理中,機(jī)器翻譯是一個(gè)重要的研究方向。假設(shè)要開發(fā)一個(gè)能夠在多種語言之間進(jìn)行高質(zhì)量翻譯的系統(tǒng)。以下關(guān)于機(jī)器翻譯技術(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于規(guī)則的機(jī)器翻譯依靠人工編寫的語法和詞匯規(guī)則進(jìn)行翻譯B.統(tǒng)計(jì)機(jī)器翻譯通過對(duì)大量雙語語料的統(tǒng)計(jì)分析來學(xué)習(xí)翻譯模式C.神經(jīng)機(jī)器翻譯利用深度神經(jīng)網(wǎng)絡(luò)模型,能夠生成更自然流暢的翻譯結(jié)果D.現(xiàn)有的機(jī)器翻譯技術(shù)已經(jīng)能夠完美處理各種領(lǐng)域和文體的文本,無需人工干預(yù)和修正10、深度學(xué)習(xí)在近年來取得了顯著的成果,特別是在圖像識(shí)別和語音識(shí)別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計(jì)算資源來進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問題,如語義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化11、人工智能中的語音識(shí)別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號(hào)的采樣率D.采用噪聲抑制技術(shù)12、人工智能中的語音識(shí)別技術(shù)能夠?qū)⑷祟惖恼Z音轉(zhuǎn)換為文字。以下關(guān)于語音識(shí)別的敘述,不準(zhǔn)確的是()A.語音識(shí)別系統(tǒng)通常包括聲學(xué)模型、語言模型和解碼器等部分B.語音識(shí)別的準(zhǔn)確率受到語音質(zhì)量、口音和背景噪聲等因素的影響C.語音識(shí)別技術(shù)已經(jīng)非常完美,能夠準(zhǔn)確識(shí)別各種口音和語速的語音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語音識(shí)別的性能和準(zhǔn)確率13、在人工智能的語音識(shí)別任務(wù)中,需要將人類的語音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語速和背景噪音下的語音,為了提高語音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語音進(jìn)行識(shí)別14、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì),哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎(jiǎng)勵(lì)B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎(jiǎng)勵(lì)C.給予固定的獎(jiǎng)勵(lì)值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎(jiǎng)勵(lì),增加學(xué)習(xí)的不確定性15、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量16、在人工智能的發(fā)展中,硬件的支持對(duì)于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢(shì)?()A.CPUB.GPUC.TPUD.FPGA17、知識(shí)圖譜是人工智能的重要技術(shù)之一。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的描述,哪一項(xiàng)是不正確的?()A.知識(shí)圖譜可以整合各種來源的歷史信息,形成結(jié)構(gòu)化的知識(shí)表示B.實(shí)體識(shí)別和關(guān)系抽取是構(gòu)建知識(shí)圖譜的關(guān)鍵步驟C.知識(shí)圖譜可以通過推理和查詢,回答關(guān)于歷史事件的復(fù)雜問題D.一旦構(gòu)建完成,知識(shí)圖譜不需要更新和維護(hù),就能始終提供準(zhǔn)確的信息18、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個(gè)關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個(gè)用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺,隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動(dòng)超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動(dòng)尋找最優(yōu)超參數(shù)19、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測(cè)和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率20、在人工智能的應(yīng)用于教育領(lǐng)域,個(gè)性化學(xué)習(xí)是一個(gè)重要的方向。假設(shè)我們要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑推薦,以下關(guān)于個(gè)性化學(xué)習(xí)的說法,哪一項(xiàng)是不正確的?()A.需要根據(jù)學(xué)生的學(xué)習(xí)歷史和特點(diǎn)進(jìn)行定制B.完全依賴人工智能算法,不需要教師的參與C.可以提高學(xué)生的學(xué)習(xí)效率和效果D.要考慮學(xué)生的興趣和能力差異21、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量22、強(qiáng)化學(xué)習(xí)是人工智能中的一種學(xué)習(xí)方法,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走而不摔倒。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.智能體通過與環(huán)境進(jìn)行交互,根據(jù)獲得的獎(jiǎng)勵(lì)來調(diào)整自己的行為策略B.強(qiáng)化學(xué)習(xí)需要大量的試驗(yàn)和錯(cuò)誤來找到最優(yōu)策略,計(jì)算成本較高C.可以用于解決連續(xù)動(dòng)作空間和高維度狀態(tài)空間的問題D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境有任何先驗(yàn)知識(shí),完全依靠隨機(jī)探索來學(xué)習(xí)23、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報(bào)道,以下關(guān)于文本生成的說法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來創(chuàng)造新穎的內(nèi)容B.語言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語法和語義的約束24、在人工智能的決策樹算法中,當(dāng)進(jìn)行特征選擇來構(gòu)建決策樹時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征25、在人工智能的教育應(yīng)用中,個(gè)性化學(xué)習(xí)系統(tǒng)可以根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)內(nèi)容和建議。假設(shè)要開發(fā)一個(gè)這樣的系統(tǒng),需要準(zhǔn)確評(píng)估學(xué)生的知識(shí)水平和學(xué)習(xí)能力。以下哪種評(píng)估方法和模型在實(shí)現(xiàn)個(gè)性化學(xué)習(xí)方面最為準(zhǔn)確和有效?()A.基于標(biāo)準(zhǔn)化測(cè)試的評(píng)估B.基于學(xué)習(xí)行為數(shù)據(jù)的動(dòng)態(tài)評(píng)估C.教師的主觀評(píng)價(jià)D.同學(xué)之間的相互評(píng)價(jià)26、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對(duì)計(jì)算資源要求不高,任何設(shè)備都能輕松應(yīng)用27、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個(gè)大型商場(chǎng)部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.實(shí)時(shí)檢測(cè)異常行為B.自動(dòng)識(shí)別人員身份C.預(yù)測(cè)潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問題28、在人工智能的情感分析任務(wù)中,假設(shè)要分析一段文本所表達(dá)的情感傾向,以下關(guān)于情感分析方法的描述,正確的是:()A.基于詞典的情感分析方法簡(jiǎn)單直觀,但準(zhǔn)確性較低,容易受到語境影響B(tài).基于機(jī)器學(xué)習(xí)的情感分析方法需要大量的標(biāo)注數(shù)據(jù),且模型訓(xùn)練時(shí)間長(zhǎng)C.深度學(xué)習(xí)的情感分析模型能夠自動(dòng)學(xué)習(xí)文本的特征,無需人工設(shè)計(jì)特征D.以上方法在情感分析任務(wù)中都有各自的優(yōu)勢(shì)和局限性29、在人工智能的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的腫瘤區(qū)域準(zhǔn)確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項(xiàng)是最關(guān)鍵的?()A.算法的計(jì)算復(fù)雜度,以確保能夠快速處理大量圖像B.算法在其他領(lǐng)域的應(yīng)用效果,而不是針對(duì)醫(yī)學(xué)圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學(xué)圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準(zhǔn)確性30、人工智能中的專家系統(tǒng)是一種基于知識(shí)的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專家系統(tǒng),需要將專家的知識(shí)和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專家系統(tǒng)的性能取決于知識(shí)的準(zhǔn)確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識(shí)C.專家系統(tǒng)的開發(fā)需要大量的時(shí)間和專業(yè)知識(shí)D.專家系統(tǒng)一旦開發(fā)完成,就不需要進(jìn)行更新和維護(hù)二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的Scikit-learn庫,實(shí)現(xiàn)主成分分析(PCA)算法對(duì)高維數(shù)據(jù)進(jìn)行降維,并使用降維后的數(shù)據(jù)進(jìn)行分類任務(wù)。比較降維前后分類模型的性能。2、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論