湖南文理學院《機器學習》2022-2023學年第一學期期末試卷_第1頁
湖南文理學院《機器學習》2022-2023學年第一學期期末試卷_第2頁
湖南文理學院《機器學習》2022-2023學年第一學期期末試卷_第3頁
湖南文理學院《機器學習》2022-2023學年第一學期期末試卷_第4頁
湖南文理學院《機器學習》2022-2023學年第一學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁湖南文理學院

《機器學習》2022-2023學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、當使用支持向量機(SVM)進行分類任務時,如果數(shù)據(jù)不是線性可分的,通常會采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法2、在構建一個用于圖像識別的卷積神經(jīng)網(wǎng)絡(CNN)時,需要考慮許多因素。假設我們正在設計一個用于識別手寫數(shù)字的CNN模型。以下關于CNN設計的描述,哪一項是不正確的?()A.增加卷積層的數(shù)量可以提取更復雜的圖像特征,提高識別準確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計算復雜度,同時保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強模型的表達能力3、在強化學習中,智能體通過與環(huán)境交互來學習最優(yōu)策略。如果智能體在某個狀態(tài)下采取的行動總是導致低獎勵,它應該()A.繼續(xù)采取相同的行動,希望情況會改善B.隨機選擇其他行動C.根據(jù)策略網(wǎng)絡的輸出選擇行動D.調整策略以避免采取該行動4、想象一個無人駕駛汽車的環(huán)境感知任務,需要識別道路、車輛、行人等對象。以下哪種機器學習方法可能是最關鍵的?()A.目標檢測算法,如FasterR-CNN或YOLO,能夠快速準確地識別多個對象,但對小目標檢測可能存在挑戰(zhàn)B.語義分割算法,對圖像進行像素級的分類,但計算量較大C.實例分割算法,不僅區(qū)分不同類別,還區(qū)分同一類別中的不同個體,但模型復雜D.以上三種方法結合使用,根據(jù)具體場景和需求進行選擇和優(yōu)化5、假設要預測一個時間序列數(shù)據(jù)中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設檢驗,如t檢驗或方差分析,但對數(shù)據(jù)分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數(shù)據(jù)訓練6、在一個多標簽分類問題中,每個樣本可能同時屬于多個類別。例如,一篇文章可能同時涉及科技、娛樂和體育等多個主題。以下哪種方法可以有效地處理多標簽分類任務?()A.將多標簽問題轉化為多個二分類問題,分別進行預測B.使用一個單一的分類器,輸出多個概率值表示屬于各個類別的可能性C.對每個標簽分別訓練一個獨立的分類器D.以上方法都不可行,多標簽分類問題無法通過機器學習解決7、想象一個圖像識別的任務,需要對大量的圖片進行分類,例如區(qū)分貓和狗的圖片。為了達到較好的識別效果,同時考慮計算資源和訓練時間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機器學習算法,如基于特征工程的支持向量機,需要手動設計特征,但計算量相對較小B.采用淺層的神經(jīng)網(wǎng)絡,如只有一到兩個隱藏層的神經(jīng)網(wǎng)絡,訓練速度較快,但可能無法捕捉復雜的圖像特征C.運用深度卷積神經(jīng)網(wǎng)絡,如ResNet架構,能夠自動學習特征,識別效果好,但計算資源需求大,訓練時間長D.利用遷移學習,將在大規(guī)模圖像數(shù)據(jù)集上預訓練好的模型,如Inception模型,微調應用到當前任務,節(jié)省訓練時間和計算資源8、在監(jiān)督學習中,常見的算法有線性回歸、邏輯回歸、支持向量機等。以下關于監(jiān)督學習算法的說法中,錯誤的是:線性回歸用于預測連續(xù)值,邏輯回歸用于分類任務。支持向量機通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關于監(jiān)督學習算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學習算法的性能只取決于模型的復雜度,與數(shù)據(jù)的特征選擇無關9、無監(jiān)督學習算法主要包括聚類和降維等方法。以下關于無監(jiān)督學習算法的說法中,錯誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關于無監(jiān)督學習算法的說法錯誤的是()A.K均值聚類算法需要預先指定聚類的個數(shù)K,并且對初始值比較敏感B.層次聚類算法可以生成樹形結構的聚類結果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學習算法不需要任何先驗知識,完全由數(shù)據(jù)本身驅動10、在進行時間序列預測時,有多種方法可供選擇。假設我們要預測股票價格的走勢。以下關于時間序列預測方法的描述,哪一項是不正確的?()A.自回歸移動平均(ARMA)模型假設時間序列是線性的,通過對歷史數(shù)據(jù)的加權平均和殘差來進行預測B.差分整合移動平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時間序列,通過差分操作將其轉化為平穩(wěn)序列C.長短期記憶網(wǎng)絡(LSTM)能夠捕捉時間序列中的長期依賴關系,適用于復雜的時間序列預測任務D.所有的時間序列預測方法都能準確地預測未來的股票價格,不受市場不確定性和突發(fā)事件的影響11、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設一個機器人要通過強化學習來學習如何在復雜的環(huán)境中行走。以下關于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略12、在一個信用評估的問題中,需要根據(jù)個人的信用記錄、收入、債務等信息評估其信用風險。以下哪種模型評估指標可能是最重要的?()A.準確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準確B.召回率(Recall),關注正例的識別能力,但可能導致誤判增加C.F1分數(shù),綜合考慮準確率和召回率,但對不同類別的權重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評估模型在不同閾值下的性能,對不平衡數(shù)據(jù)較穩(wěn)健13、在一個無監(jiān)督學習問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結構。如果數(shù)據(jù)具有層次結構,以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網(wǎng)絡(GAN)C.層次聚類D.以上方法都可以14、在進行圖像識別任務時,需要對大量的圖像數(shù)據(jù)進行特征提取。假設我們有一組包含各種動物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設計特征方法,可能會面臨諸多挑戰(zhàn),例如特征的選擇和設計需要豐富的專業(yè)知識和經(jīng)驗。而使用深度學習中的卷積神經(jīng)網(wǎng)絡(CNN),能夠自動從數(shù)據(jù)中學習特征。那么,以下關于CNN在圖像特征提取方面的描述,哪一項是正確的?()A.CNN只能提取圖像的低級特征,如邊緣和顏色B.CNN能夠同時提取圖像的低級和高級語義特征,具有強大的表達能力C.CNN提取的特征與圖像的內容無關,主要取決于網(wǎng)絡結構D.CNN提取的特征是固定的,無法根據(jù)不同的圖像數(shù)據(jù)集進行調整15、考慮一個圖像分類任務,使用深度學習模型進行訓練。在訓練過程中,如果發(fā)現(xiàn)模型在訓練集上的準確率很高,但在驗證集上的準確率較低,可能存在以下哪種問題?()A.模型欠擬合,需要增加模型的復雜度B.數(shù)據(jù)預處理不當,需要重新處理數(shù)據(jù)C.模型過擬合,需要采取正則化措施D.訓練數(shù)據(jù)量不足,需要增加更多的數(shù)據(jù)二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋如何在機器學習中處理異常值。2、(本題5分)簡述在機器學習中,如何處理類別不平衡的數(shù)據(jù)集。3、(本題5分)說明機器學習在動物學中的行為分析。三、論述題(本大題共5個小題,共25分)1、(本題5分)分析長短時記憶網(wǎng)絡(LSTM)和門控循環(huán)單元(GRU)的改進之處及在序列數(shù)據(jù)處理中的優(yōu)勢。2、(本題5分)分析機器學習中的半監(jiān)督學習在圖像標注中的應用。半監(jiān)督學習可以用于圖像標注,減少標注成本,介紹其應用方法。3、(本題5分)詳細闡述自動編碼器(Autoencoder)在數(shù)據(jù)壓縮和特征學習中的作用,分析其與主成分分析(PCA)的區(qū)別和聯(lián)系。4、(本題5分)探討深度學習中的圖神經(jīng)網(wǎng)絡的原理及應用。分析其在社交網(wǎng)絡分析、化學結構預測等方面的潛力。5、(本題5分)分析機器學習中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論