




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教A版(2019)選擇性必修第二冊(cè)4.3.1等比數(shù)列的概念(1)復(fù)習(xí)回顧等差數(shù)列的研究思路:探究實(shí)例中數(shù)列的共同取值規(guī)律(通過運(yùn)算)抽象出定義歸納通項(xiàng)公式(根據(jù)定義)探究數(shù)列與相關(guān)函數(shù)的關(guān)系(利用通項(xiàng)公式)應(yīng)用通項(xiàng)公式解決問題推導(dǎo)數(shù)列的前n項(xiàng)和公式應(yīng)用通項(xiàng)公式與前n項(xiàng)和公式解決問題實(shí)例引入實(shí)例1:兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:
9,92,93,…,910;100,1002,1003,…,10010;
5,52,53,…,510.實(shí)例2:《莊子·天下》中提到:“一尺之棰,日取其半,萬世不竭.”如果把
“一尺之棰”的長(zhǎng)度看成單位“1”,那么從第1天開始,各天得到的
“棰”的長(zhǎng)度依次是:實(shí)例3:在營(yíng)養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20min就通
過分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開始,各次
分裂產(chǎn)生的后代個(gè)數(shù)依次是:2,4,8,16,32,64,???.
實(shí)例4:某人存入銀行a元,存期為5年,年利率為r,按照復(fù)利,他5年內(nèi)每
年末得到的本利和分別是:a(1+r),a(1+r)2,a(1+r)3,a(1+r)4,a(1+r)5.實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用新知探究實(shí)例1:9,92,93,…,910;100,1002,1003,…,10010;
5,52,53,…,510.實(shí)例2:實(shí)例3:2,4,8,16,32,64,???.
實(shí)例4:a(1+r),a(1+r)2,a(1+r)3,a(1+r)4,a(1+r)5.探究1:類比等差數(shù)列的研究,從這四個(gè)實(shí)例呈現(xiàn)的數(shù)列中,你通過
什么運(yùn)算?發(fā)現(xiàn)了什么規(guī)律?從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù)實(shí)例2-4的數(shù)列是否也存在這樣的規(guī)律??實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用概念生成等比數(shù)列:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用小寫字母q表示.探究2:類比等差中項(xiàng)的定義,你能給出等比中項(xiàng)的定義嗎?等比中項(xiàng):三個(gè)數(shù)a,G,b成等比數(shù)列,則G叫做a與b的等比中項(xiàng).思考:公差d∈R,公比q同樣能取全體實(shí)數(shù)嗎?(q≠0)思考:等比數(shù)列中有為零的項(xiàng)嗎?在等比數(shù)列{an}中,則an+1叫做an與an+2的等比中項(xiàng).an+12=an·an+2
有什么作用?an+12=an·an+2
數(shù)列{an}是等比數(shù)列思考:公差d=0時(shí),等差數(shù)列是常數(shù)列;等比數(shù)列可能是常數(shù)列嗎?思考:有沒有既是等差數(shù)列又是等比數(shù)列的數(shù)列?實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用新知探究探究:你能類比等差數(shù)列通項(xiàng)公式的推導(dǎo)過程,推導(dǎo)等比數(shù)列的通
項(xiàng)公式嗎?實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用設(shè)等比數(shù)列{an}的公比為q,由等比數(shù)列的定義,得:an+1=an·q∴a2=a1·qa3=a2·q∴an=a1·qn-1=a1·q2a4=a3·q=a1·q3=a1·q4…an=a1·qn-1
n=1時(shí),a1=a1·q1-1=a1(n≥2)迭代法a5=a4·q由等比數(shù)列的定義,得:設(shè)等比數(shù)列{an}的公比為q,∴an=a1·qn-1n=1時(shí),a1=a1·q1-1=a1累乘法新知探究探究:你能類比等差數(shù)列與一次函數(shù)模型的關(guān)系,探討等比數(shù)列與函數(shù)模型的關(guān)系嗎?實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用an=a1·qn-1②任給指數(shù)型函數(shù)f(x)=kax(k,a為常數(shù),k≠0,a>0且a≠1),則f(1)=ka,f(2)=ka2,…,f(n)=kan,構(gòu)成以ka為首項(xiàng),a為公比的等比數(shù)列{kan}.①公比q>0且q≠1時(shí),等比數(shù)列{an}的圖象是指數(shù)型函數(shù)圖象上一系列離散的點(diǎn)(n,an).
a1>0且q>1或a1<0且0<q<1時(shí),數(shù)列{an}單調(diào)遞增;
a1<0且q>1或a1>0且0<q<1時(shí),數(shù)列{an}單調(diào)遞減.例題精講實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用例1.若等比數(shù)列{an}的第4項(xiàng)和第6項(xiàng)分別為48和12,求{an}的第5項(xiàng).課本P29例題精講實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用例2.已知等比數(shù)列{an}的公比為q,試用{an}的第m項(xiàng)am表示an.課本P30例題精講實(shí)例定義通項(xiàng)公式與函數(shù)的關(guān)系應(yīng)用例3.數(shù)列{an}共有5項(xiàng),前三項(xiàng)成等比數(shù)列,后三項(xiàng)成等差數(shù)列,第3
項(xiàng)等于80,第2項(xiàng)與第4項(xiàng)的和等于136,第1項(xiàng)與第5項(xiàng)的和等于
132.求這個(gè)數(shù)列.課本P30例題精講等比中項(xiàng)的應(yīng)用補(bǔ)充:用等比中項(xiàng)求下列等比數(shù)列中a的值:(1)2,a,8(2)2,4,a,16(3)-2,4,a,16鞏固提升自主針對(duì)訓(xùn)練2:有四個(gè)實(shí)數(shù),前三個(gè)數(shù)成等比數(shù)列,且它們的乘積為216,
后三個(gè)數(shù)成等差數(shù)列,且它們的和為12,求這四個(gè)數(shù).等比中項(xiàng)的應(yīng)用鞏固提升自主針對(duì)訓(xùn)練1:(2)在等比數(shù)列{an}中,a2+a5=18,a3+a6=9,
an=1,求n.基本量的運(yùn)算鞏固提升自主例3:已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,
且,an,Sn成等差數(shù)列.則數(shù)列{an}是不是等比數(shù)列?若是,寫出通項(xiàng)公式;若不是,請(qǐng)說明理由.等比數(shù)列的判定與證明鞏固提升自主典例:已知an≠0的等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)
列且b5,b9是方程x2+5x+4=0的兩個(gè)根,則
.等差、等比數(shù)列綜合應(yīng)用課堂練習(xí)課本P313.在等比數(shù)列{an}中,a1a3=36,a2+a4=60.求a1和公比q.課堂練習(xí)課本P314.對(duì)數(shù)列{an},若點(diǎn)(n,an)(n∈N*)都在函數(shù)y=cqx的圖象上,其中c,q
為常數(shù),且c≠0,q≠0,q≠1,試判斷數(shù)列{an}是否是等比數(shù)列,并證
明你的結(jié)論.課堂練習(xí)課本P315.已知數(shù)列{a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6 做一頂帽子(教學(xué)設(shè)計(jì))-2024-2025學(xué)年二年級(jí)上冊(cè)科學(xué)教科版
- 清淤護(hù)岸施工方案
- 七年級(jí)語(yǔ)文下冊(cè) 第六單元 22 陋室銘教學(xué)設(shè)計(jì) 語(yǔ)文版
- python經(jīng)典案例20個(gè)簡(jiǎn)短
- pmp考試沖刺串講
- 2024新版一年級(jí)語(yǔ)文生字表
- 2024能效鑒定范圍
- 2024屆福建美術(shù)聯(lián)考一分一段表
- 一年級(jí)品德與生活上冊(cè) 愛護(hù)自己的身體教學(xué)設(shè)計(jì) 首師大版
- 2025一級(jí)建造師重點(diǎn)考點(diǎn) 機(jī)電實(shí)務(wù) 招投標(biāo)管理、合同管理
- 合作社組織架構(gòu)圖
- 《你知道嗎?》羅鳴亮
- 彩色簡(jiǎn)約魚骨圖PPT圖表模板
- 公司職工薪酬福利制度薪酬福利制度
- 高中英語(yǔ)各種教材詞組匯總大全(超級(jí)實(shí)用)
- 內(nèi)燃機(jī)機(jī)油泵轉(zhuǎn)子系列參數(shù)
- 遠(yuǎn)程視頻會(huì)議系統(tǒng)建設(shè)方案課件
- 高溫導(dǎo)線規(guī)格及安全電流計(jì)算
- 愛麗絲夢(mèng)游仙境中英劇本(共21頁(yè))
- 四十二手眼圖(經(jīng)典珍藏版)
- 通用橫版企業(yè)報(bào)價(jià)單模板
評(píng)論
0/150
提交評(píng)論