版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題07函數(shù)的奇偶性真題再現(xiàn)一、單選題1.(2023·全國·統(tǒng)考高考真題)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0(
).A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【解析】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域為SKIPIF1<0或SKIPIF1<0,關(guān)于原點對稱.SKIPIF1<0,故此時SKIPIF1<0為偶函數(shù).故選:B.2.(2023·全國·統(tǒng)考高考真題)已知SKIPIF1<0是偶函數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【解析】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,又因為SKIPIF1<0不恒為0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.3.(2023·天津·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的圖象如下圖所示,則SKIPIF1<0的解析式可能為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由圖知:函數(shù)圖象關(guān)于y軸對稱,其為偶函數(shù),且SKIPIF1<0,由SKIPIF1<0且定義域為R,即B中函數(shù)為奇函數(shù),排除;當(dāng)SKIPIF1<0時SKIPIF1<0、SKIPIF1<0,即A、C中SKIPIF1<0上函數(shù)值為正,排除;故選:D4.(2022·天津·統(tǒng)考高考真題)函數(shù)SKIPIF1<0的圖像為(
)A. B.C. D.【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),A選項錯誤;又當(dāng)SKIPIF1<0時,SKIPIF1<0,C選項錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)單調(diào)遞增,故B選項錯誤;故選:D.5.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【解析】[方法一]:賦值加性質(zhì)因為SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個周期為SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由SKIPIF1<0,聯(lián)想到余弦函數(shù)和差化積公式SKIPIF1<0,可設(shè)SKIPIF1<0,則由方法一中SKIPIF1<0知SKIPIF1<0,解得SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0符合條件,因此SKIPIF1<0的周期SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,由于22除以6余4,所以SKIPIF1<0.故選:A.6.(2021·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因為函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),因為函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,其它三個選項未知.故選:B.7.(2021·全國·高考真題)設(shè)SKIPIF1<0是定義域為R的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意可得:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.故選:C.8.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】[方法一]:因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路一:從定義入手.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.[方法二]:因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路二:從周期性入手,由兩個對稱性可知,函數(shù)SKIPIF1<0的周期SKIPIF1<0.所以SKIPIF1<0.故選:D.9.(2021·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意可得SKIPIF1<0,對于A,SKIPIF1<0不是奇函數(shù);對于B,SKIPIF1<0是奇函數(shù);對于C,SKIPIF1<0,定義域不關(guān)于原點對稱,不是奇函數(shù);對于D,SKIPIF1<0,定義域不關(guān)于原點對稱,不是奇函數(shù).故選:B二、多選題10.(2023·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,則(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0是偶函數(shù) D.SKIPIF1<0為SKIPIF1<0的極小值點【解析】方法一:因為SKIPIF1<0,對于A,令SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0正確.對于B,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故B正確.對于C,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,又函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故SKIPIF1<0正確,對于D,不妨令SKIPIF1<0,顯然符合題設(shè)條件,此時SKIPIF1<0無極值,故SKIPIF1<0錯誤.方法二:因為SKIPIF1<0,對于A,令SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0正確.對于B,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故B正確.對于C,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,又函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故SKIPIF1<0正確,對于D,當(dāng)SKIPIF1<0時,對SKIPIF1<0兩邊同時除以SKIPIF1<0,得到SKIPIF1<0,故可以設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0肘,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,顯然,此時SKIPIF1<0是SKIPIF1<0的極大值,故D錯誤.故選:SKIPIF1<0.11.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】[方法一]:對稱性和周期性的關(guān)系研究對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0①,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,故C正確;對于SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,由①求導(dǎo),和SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,因為其定義域為R,所以SKIPIF1<0,結(jié)合SKIPIF1<0關(guān)于SKIPIF1<0對稱,從而周期SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.[方法二]:【最優(yōu)解】特殊值,構(gòu)造函數(shù)法.由方法一知SKIPIF1<0周期為2,關(guān)于SKIPIF1<0對稱,故可設(shè)SKIPIF1<0,則SKIPIF1<0,顯然A,D錯誤,選BC.故選:BC.[方法三]:因為SKIPIF1<0,SKIPIF1<0均為偶函數(shù),所以SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故C正確;函數(shù)SKIPIF1<0,SKIPIF1<0的圖象分別關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0,且函數(shù)SKIPIF1<0可導(dǎo),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故B正確,D錯誤;若函數(shù)SKIPIF1<0滿足題設(shè)條件,則函數(shù)SKIPIF1<0(C為常數(shù))也滿足題設(shè)條件,所以無法確定SKIPIF1<0的函數(shù)值,故A錯誤.故選:BC.三、填空題12.(2023·全國·統(tǒng)考高考真題)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0________.【解析】因為SKIPIF1<0為偶函數(shù),定義域為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,此時SKIPIF1<0,所以SKIPIF1<0,又定義域為SKIPIF1<0,故SKIPIF1<0為偶函數(shù),所以SKIPIF1<0.13.(2021·全國·統(tǒng)考高考真題)寫出一個同時具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0_______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0;③SKIPIF1<0是奇函數(shù).【解析】取SKIPIF1<0,則SKIPIF1<0,滿足①,SKIPIF1<0,SKIPIF1<0時有SKIPIF1<0,滿足②,SKIPIF1<0的定義域為SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0是奇函數(shù),滿足③.故答案為:SKIPIF1<0(答案不唯一,SKIPIF1<0均滿足)14.(2021·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.【解析】因為SKIPIF1<0,故SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),故SKIPIF1<0時SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0四、雙空題15.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【解析】[方法一]:奇函數(shù)定義域的對稱性,若SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0,不關(guān)于原點對稱,SKIPIF1<0,若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關(guān)于原點對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,[方法三]:因為函數(shù)SKIPIF1<0為奇函數(shù),所以其定義域關(guān)于原點對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域為SKIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內(nèi)滿足SKIPIF1<0,符合題意.故答案為:SKIPIF1<0;SKIPIF1<0.考點一奇偶性的判斷或證明一、多選題1.以下函數(shù)的圖象是中心對稱圖形的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】對于A,由二次函數(shù)的性質(zhì)可知,函數(shù)SKIPIF1<0無對稱中心,故A錯誤;對于B,根據(jù)冪函數(shù)的性質(zhì)可知,函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,故B正確;對于C,SKIPIF1<0,所以SKIPIF1<0的圖象可以由反比例函數(shù)SKIPIF1<0的圖象向右平移1個單位,向上平移2個單位得到,且反比例函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,所以函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,故C正確;對于D,函數(shù)的定義域為SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),圖象關(guān)于原點對稱,故D正確;故選:BCD.2.設(shè)函數(shù)SKIPIF1<0的定義域都為R,且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),則下列結(jié)論正確的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0是奇函數(shù) D.SKIPIF1<0是偶函數(shù)【解析】因為函數(shù)SKIPIF1<0的定義域都為R,所以各選項中函數(shù)的定義域也為R,關(guān)于原點對稱,因為SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,對于A,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),故A錯誤;對于B,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是偶函數(shù),故B錯誤;對于C,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),故C正確;對于D,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是偶函數(shù),故D正確.故選:CD.3.若函數(shù)SKIPIF1<0在其定義域內(nèi)是奇函數(shù)或偶函數(shù),則稱SKIPIF1<0具有奇偶性.以下函數(shù)中,具有奇偶性的函數(shù)是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【解析】選項A,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.所以函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,定義域不關(guān)于原點對稱,故不具有奇偶性;選項B,為使函數(shù)SKIPIF1<0的分子有意義,SKIPIF1<0,于是SKIPIF1<0恒成立,故SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0是奇函數(shù);選項C,函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0為奇函數(shù);選項D,畫出SKIPIF1<0的圖象,如圖,圖象關(guān)于y軸對稱,故SKIPIF1<0為偶函數(shù).故選:BCD.二、單選題4.設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】對于A選項,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,故函數(shù)SKIPIF1<0不是奇函數(shù);對于B選項,SKIPIF1<0,則函數(shù)SKIPIF1<0為奇函數(shù);對于C選項,令SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0不是奇函數(shù);對于D選項,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故函數(shù)SKIPIF1<0不是奇函數(shù).故選:B.5.函數(shù)SKIPIF1<0(
)A.是奇函數(shù) B.是偶函數(shù)C.既是奇函數(shù)又是偶函數(shù) D.既不是奇函數(shù)也不是偶函數(shù)【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域關(guān)于原點對稱,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),函數(shù)SKIPIF1<0不是偶函數(shù),故選:A.6.定義在R上的函數(shù)SKIPIF1<0滿足:①SKIPIF1<0,②SKIPIF1<0是奇函數(shù),則下列結(jié)論可能不正確的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0關(guān)于x=1對稱【解析】定義在R上的函數(shù)SKIPIF1<0,滿足SKIPIF1<0,有SKIPIF1<0,函數(shù)圖像上的點SKIPIF1<0關(guān)于點SKIPIF1<0的對稱點為SKIPIF1<0,即SKIPIF1<0,所以函數(shù)圖像上的點關(guān)于點SKIPIF1<0的對稱點也在函數(shù)圖像上,即函數(shù)圖像關(guān)于點SKIPIF1<0對稱;SKIPIF1<0是奇函數(shù),有SKIPIF1<0,函數(shù)圖像上的點SKIPIF1<0關(guān)于點SKIPIF1<0的對稱點為SKIPIF1<0,即SKIPIF1<0,所以函數(shù)圖像上的點關(guān)于點SKIPIF1<0的對稱點也在函數(shù)圖像上,即函數(shù)圖像關(guān)于點SKIPIF1<0對稱,點SKIPIF1<0關(guān)于點SKIPIF1<0的對稱點SKIPIF1<0,所以SKIPIF1<0;∴SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,得函數(shù)周期為4,B選項正確;由SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,又函數(shù)周期為4,有SKIPIF1<0,所以SKIPIF1<0,C選項正確;令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的圖像關(guān)于x=1對稱,D選項正確;函數(shù)SKIPIF1<0,滿足題目中的條件,但SKIPIF1<0不是偶函數(shù),A選項錯誤.故選:A7.若定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:對于任意的SKIPIF1<0、SKIPIF1<0,恒有SKIPIF1<0,則函數(shù)SKIPIF1<0為(
)A.奇函數(shù) B.偶函數(shù) C.非奇非偶函數(shù) D.無法判斷奇偶性【解析】因為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,故函數(shù)SKIPIF1<0為奇函數(shù).故選:A.三、解答題8.已知函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0).(1)證明:函數(shù)SKIPIF1<0是偶函數(shù);(2)若SKIPIF1<0在定義域上恒成立,求SKIPIF1<0的取值范圍.【解析】(1)證明:由于SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,∴函數(shù)SKIPIF1<0的定義域為SKIPIF1<0關(guān)于原點對稱.又∵SKIPIF1<0SKIPIF1<0,∴函數(shù)SKIPIF1<0為偶函數(shù).(2)由(1)知SKIPIF1<0為偶函數(shù),∴只需討論SKIPIF1<0時的情況.當(dāng)SKIPIF1<0時,要使SKIPIF1<0,只需SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0.9.判斷下列函數(shù)的奇偶性:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0解:(1)函數(shù)的定義域為SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù);(2)由函數(shù)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,奇函數(shù)的定義域為SKIPIF1<0關(guān)于原點對稱,故SKIPIF1<0,所以函數(shù)SKIPIF1<0既是奇函數(shù)又是偶函數(shù);(3)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,綜上,對于任意的SKIPIF1<0,都有SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù);(4)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù).10.判斷下列函數(shù)的奇偶性:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【解析】(1)∵函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,關(guān)于坐標(biāo)原點不對稱∴SKIPIF1<0既不是奇函數(shù)也不是偶函數(shù).(2)∵函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于坐標(biāo)原點對稱.又SKIPIF1<0∴SKIPIF1<0為偶函數(shù).(3)∵函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于坐標(biāo)原點對稱,SKIPIF1<0∴SKIPIF1<0既是奇函數(shù)也是偶函數(shù).(4)SKIPIF1<0的定義域為SKIPIF1<0.∵SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為奇函數(shù).11.若定義在R上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,且當(dāng)SKIPIF1<0時,SKIPIF1<0.(1)求證:SKIPIF1<0為奇函數(shù);(2)求證:SKIPIF1<0為SKIPIF1<0上的增函數(shù)【解析】(1)證明:由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0為奇函數(shù)(2)證明:設(shè)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的增函數(shù).12.設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0對任意SKIPIF1<0均滿足:SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.(1)判斷并證明SKIPIF1<0的奇偶性;(2)判斷并證明SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(3)若SKIPIF1<0,解不等式SKIPIF1<0.【解析】(1)SKIPIF1<0為奇函數(shù),證明如下:依題意,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是奇函數(shù).(2)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,證明如下:任取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(3)由于SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.考點二利用奇偶性求函數(shù)值或解析式一、單選題1.已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.1 B.-1 C.5 D.-5【解析】根據(jù)奇函數(shù)性質(zhì)可知SKIPIF1<0;而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B2.已知SKIPIF1<0(其中SKIPIF1<0為常數(shù)且SKIPIF1<0),如果SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.5【解析】設(shè)SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則函數(shù)SKIPIF1<0是奇函數(shù);SKIPIF1<0,則函數(shù)SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù);由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選:B.3.已知SKIPIF1<0,則SKIPIF1<0等于(
)A.8 B.SKIPIF1<0 C.SKIPIF1<0 D.10【解析】函數(shù)SKIPIF1<0的定義域為R,令函數(shù)SKIPIF1<0,顯然SKIPIF1<0,即函數(shù)SKIPIF1<0是R上的奇函數(shù),因此SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:C4.SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),且SKIPIF1<0則SKIPIF1<0(
)A.3 B.-1 C.1 D.-3【解析】因為SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),則SKIPIF1<0所以SKIPIF1<0,兩式相加可得SKIPIF1<0,即SKIPIF1<0,故選:A.5.已知函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值與最小值分別為SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.2 D.4【解析】已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0在定義域內(nèi)為非奇非偶函數(shù),令SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0在定義域內(nèi)為奇函數(shù),設(shè)SKIPIF1<0的最大值為SKIPIF1<0,則最小值為SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,所以SKIPIF1<0,故選:C.6.已知函數(shù)SKIPIF1<0在SKIPIF1<0上為偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0的解析式是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,由于SKIPIF1<0是偶函數(shù),所以SKIPIF1<0.故選:C7.已知函數(shù)SKIPIF1<0是偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,那么當(dāng)SKIPIF1<0時,SKIPIF1<0的解析式是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因為函數(shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0.故選:A8.已知SKIPIF1<0為定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.﹣2022 B.2022 C.SKIPIF1<0 D.SKIPIF1<0【解析】因為SKIPIF1<0為定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選:C.二、填空題9.已知SKIPIF1<0為奇函數(shù),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.【解析】SKIPIF1<0為奇函數(shù),有SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.10.設(shè)SKIPIF1<0為實數(shù),函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0__.【解析】因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.11.若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),則SKIPIF1<0______.【解析】SKIPIF1<0函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.12.已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0__.【解析】SKIPIF1<0定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0(7)SKIPIF1<0(1)SKIPIF1<0.SKIPIF1<0.考點三由奇偶性解不等式一、單選題1.函數(shù)SKIPIF1<0是R上的偶函數(shù),且在SKIPIF1<0上是增函數(shù),若SKIPIF1<0,則a的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【解析】SKIPIF1<0是R上的偶函數(shù),且在SKIPIF1<0上是增函數(shù)SKIPIF1<0在SKIPIF1<0是減函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;故選:C.2.已知SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),設(shè)對于任意的SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,函數(shù)單調(diào)遞增,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0∴不等式SKIPIF1<0的解集為SKIPIF1<0,故選:A.3.已知偶函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,又SKIPIF1<0為偶函數(shù),SKIPIF1<0故SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.故選:C4.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】依題意函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上遞增,SKIPIF1<0.畫出SKIPIF1<0的大致圖象如下圖所示,由圖可知,不等式SKIPIF1<0的解集為SKIPIF1<0.故選:A5.已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】因為定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,得SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.6.已知SKIPIF1<0是定義在R上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年礦產(chǎn)資源開發(fā)與合作合同
- 兼職文案創(chuàng)意撰寫合同
- 交通運輸工具融資租賃合同
- 環(huán)保工程樁基機械施工合同
- 智能電網(wǎng)通信網(wǎng)絡(luò)升級合同
- 員工餐費補貼發(fā)放細(xì)則
- 餐廳浮雕施工協(xié)議
- 環(huán)保設(shè)施電工維護(hù)聘用協(xié)議
- 臨時搭建物拆除合同
- 學(xué)校出租車租賃合同協(xié)議書
- 【MOOC】線性代數(shù)-同濟(jì)大學(xué) 中國大學(xué)慕課MOOC答案
- 大美勞動智慧樹知到期末考試答案章節(jié)答案2024年江西財經(jīng)大學(xué)
- 勞動教育智慧樹知到期末考試答案2024年
- 易制毒化學(xué)品購買申請表申請
- 通用機械設(shè)備管理基礎(chǔ)(共66頁).ppt
- 西方有趣節(jié)日介紹西紅柿節(jié)英文(課堂PPT)
- 綿陽市物業(yè)服務(wù)收費管理實施細(xì)則
- 三年級作文編寫童話故事(課堂PPT)
- 泵類及液體輸送系統(tǒng)節(jié)能監(jiān)測 泵類及液體輸送系統(tǒng)節(jié)能監(jiān)測計算表
- 五年級數(shù)學(xué)上冊《列方程解應(yīng)用題》(課堂PPT)
- 大型商業(yè)綜合體消防安全管理規(guī)則2020年試行
評論
0/150
提交評論