版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省開封市祥符區(qū)2024年高三下學期一診考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.123.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)4.已知函數(shù),則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.5.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現(xiàn)象.為考察共享經濟對企業(yè)經濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.6.雙曲線的漸近線方程為()A. B. C. D.7.已知函數(shù),,,,則,,的大小關系為()A. B. C. D.8.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.9.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.1110.寧波古圣王陽明的《傳習錄》專門講過易經八卦圖,下圖是易經八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.11.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根12.若sin(α+3π2A.-12 B.-13二、填空題:本題共4小題,每小題5分,共20分。13.(5分)函數(shù)的定義域是____________.14.若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_____.15.若,則_________.16.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求證:當時,;(2)若對任意存在和使成立,求實數(shù)的最小值.18.(12分)設前項積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項公式;(Ⅱ)設是數(shù)列的前項和,且,求的最小值.19.(12分)已知函數(shù),,(1)討論的單調性;(2)若在定義域內有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.20.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.21.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.22.(10分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.2、D【解析】
推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.3、B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結合思想,屬于中檔題.4、D【解析】
先求函數(shù)在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.5、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經濟活躍度的差異最大,它最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果,故選D.6、C【解析】
根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.7、B【解析】
可判斷函數(shù)在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質,利用單調性比大小等知識,考查了學生的運算求解能力.8、C【解析】
根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.9、A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.10、B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.11、C【解析】
由輔助角公式化簡三角函數(shù)式,結合三角函數(shù)圖象平移變換即可求得的解析式,結合正弦函數(shù)的圖象與性質即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數(shù)性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數(shù)的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質的綜合應用,屬于中檔題.12、B【解析】
由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.14、【解析】
畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.15、【解析】
因為,所以.因為,所以,又,所以,所以..16、【解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)不等式等價于,設,利用導數(shù)可證恒成立,從而原不等式成立.(2)由題設條件可得在上有兩個不同零點,且,利用導數(shù)討論的單調性后可得其最小值,結合前述的集合的包含關系可得的取值范圍.【詳解】(1)設,則,當時,由,所以在上是減函數(shù),所以,故.因為,所以,所以當時,.(2)由(1)當時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當時,在上為減函數(shù),不合題意;(2)當時,,由題意知在上不單調,所以,即,當時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數(shù)的最小值為.【點睛】本題考查導數(shù)在不等式恒成立、等式能成立中的應用,前者注意將欲證不等式合理變形,轉化為容易證明的新不等式,后者需根據(jù)等式能成立的特點確定出函數(shù)應該具有的性質,再利用導數(shù)研究該性質,本題屬于難題.18、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數(shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點睛】本題主要考查等差數(shù)列的定義,前n項和以及數(shù)列的增減性,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.19、(1)時,在上單調遞增,時,在上遞減,在上遞增.(2).【解析】
(1)求出導函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結論.【詳解】(1)函數(shù)定義域是,,當時,,單調遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調遞增,時,在上遞減,在上遞增.(2)易知,由函數(shù)單調性,若有唯一零點,則或.當時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點睛】本題考查用導數(shù)研究函數(shù)的單調性,考查函數(shù)零點個數(shù)與不等式恒成立問題,解題關鍵在于轉化,不等式恒成立問題通常轉化為求函數(shù)的最值.這又可通過導數(shù)求解.20、(1)見解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數(shù)列,,,所以其通項公式為.②,,,此時等差數(shù)列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無正整數(shù)解,故不存在正整數(shù),使,,成等比數(shù)列.若選則②,,則,若,,成等比數(shù)列,則,即,整理得,因為為正整數(shù),所以.故存在正整數(shù),使,,成等比數(shù)列.【點睛】本題考查等差數(shù)列的通項公式及前n項和,涉及到等比數(shù)列的性質,是一道中檔題.21、(1);(2)存在,且方程為或.【解析】
(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 萬能補充協(xié)議
- 足底發(fā)麻病因介紹
- (2024)高速吹膜機項目可行性研究報告?zhèn)浒干暾埬0?一)
- 云南省曲靖市沾益區(qū)2024-2025學年七年級9月月考道德與法治試題(原卷版)-A4
- 2024秋新滬科版物理8年級上冊教學課件 第6章 熟悉而陌生的力 第4節(jié) 探究:滑動摩擦力大小與哪里因素有關
- 2023年智能電能表及配件項目融資計劃書
- 2023年原料藥機械及設備項目融資計劃書
- 《OJT推進與實施》課件
- 《珠心算基本功訓練》課件
- 湖北省黃石市大冶市2023-2024學年七年級上學期期末考試數(shù)學試卷(含答案)
- 汽車文化課件 第一章 汽車的前世今生
- 2024贊助合同模板
- 自來水施工方案
- 理賠基礎知識培訓
- 商務禮儀課件教學課件
- 高中語文《荷花淀》隨堂練習(含答案)
- 小學勞動教育實施情況調查問卷(含教師卷和學生卷)及調查結論
- 江西省南昌市雷式學校2024-2025學年八年級上學期第一次月考物理試卷
- 深信服aDesk桌面云實施方案
- 【部編】人教版六年級上冊道德與法治全冊知識點總結梳理
- 期末測評卷-2024-2025學年語文四年級上冊統(tǒng)編版
評論
0/150
提交評論