廣西大學附屬中學2024屆高三下學期一??荚嚁?shù)學試題_第1頁
廣西大學附屬中學2024屆高三下學期一模考試數(shù)學試題_第2頁
廣西大學附屬中學2024屆高三下學期一??荚嚁?shù)學試題_第3頁
廣西大學附屬中學2024屆高三下學期一??荚嚁?shù)學試題_第4頁
廣西大學附屬中學2024屆高三下學期一??荚嚁?shù)學試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西大學附屬中學2024屆高三下學期一??荚嚁?shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.根據(jù)散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln22.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.3.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定4.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.635.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.16.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.7.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于8.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.99.已知向量,,若,則()A. B. C.-8 D.810.復數(shù),若復數(shù)在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.11.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數(shù)大約為()A. B. C. D.12.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正項等比數(shù)列中,,則__________.14.已知關于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________15.已知向量,,若,則實數(shù)______.16.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)生產一種產品,從流水線上隨機抽取件產品,統(tǒng)計其質量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產品的質量指標值在的為劣質品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產品的質量指標值位于各區(qū)間的頻率代替產品的質量指標值位于該區(qū)間的概率.(1)求每件產品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.表中,,,.根據(jù)散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.①求關于的回歸方程;②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,?。└剑簩τ谝唤M數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,.18.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.19.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.20.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數(shù)的取值范圍.21.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.22.(10分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對于任意,有且僅有一個零點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數(shù)函數(shù)的最值,是基礎題,.2、A【解析】

根據(jù)平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.3、A【解析】

利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題4、B【解析】

根據(jù)二項式展開式的通項公式,結合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.5、C【解析】

根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.6、D【解析】

推導出函數(shù)的圖象關于直線對稱,由題意得出,進而可求得實數(shù)的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數(shù)的圖象關于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應用,解答的關鍵就是推導出,在求出參數(shù)后要對參數(shù)的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.7、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.8、A【解析】

由題可知:,且可得,構造函數(shù)求導,通過導函數(shù)求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數(shù)求函數(shù)單調性、極值和最值,以及運用構造函數(shù)法和放縮法,同時考查轉化思想和解題能力.9、B【解析】

先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.10、A【解析】

先通過復數(shù)在復平面內對應的點關于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內對應的點關于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎題.11、A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區(qū)域和所求事件構成的區(qū)域轉化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數(shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.12、B【解析】

考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎題.14、【解析】

先換元,令,將原方程轉化為,利用參變分離法轉化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉化與化歸思想的能力,方程有解問題轉化成兩函數(shù)的圖像有交點問題,是常見的轉化方式.15、-2【解析】

根據(jù)向量坐標運算可求得,根據(jù)平行關系可構造方程求得結果.【詳解】由題意得:,解得:本題正確結果:【點睛】本題考查向量的坐標運算,關鍵是能夠利用平行關系構造出方程.16、【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)元.(2)①②萬元【解析】

(1)每件產品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設換元后用導數(shù)求出最大值.【詳解】解:(1)設每件產品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產品為劣質品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數(shù)據(jù)可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設年收益為萬元,則令,則,,當時,,當時,,所以當,即時,有最大值.即該企業(yè)每年應該投入萬元營銷費,能使得該企業(yè)的年收益的預報值達到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應用.在求指數(shù)型回歸方程時,可通過取對數(shù)的方法轉化為求線性回歸直線方程,然后再求出指數(shù)型回歸方程.18、(1)見解析(2)【解析】

(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設,則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設平面的法向量為,則有,即,取,得.設與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2)【解析】

(1)根據(jù)遞推公式,用配湊法構造等比數(shù)列,求其通項公式,進而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減法求數(shù)列的前n項和的問題,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數(shù)的取值范圍是.【點睛】本題考查由存在性問題求參數(shù)的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論