![廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題_第1頁](http://file4.renrendoc.com/view9/M01/19/26/wKhkGWc788-AExHMAAH_iHNyAag841.jpg)
![廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題_第2頁](http://file4.renrendoc.com/view9/M01/19/26/wKhkGWc788-AExHMAAH_iHNyAag8412.jpg)
![廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題_第3頁](http://file4.renrendoc.com/view9/M01/19/26/wKhkGWc788-AExHMAAH_iHNyAag8413.jpg)
![廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題_第4頁](http://file4.renrendoc.com/view9/M01/19/26/wKhkGWc788-AExHMAAH_iHNyAag8414.jpg)
![廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題_第5頁](http://file4.renrendoc.com/view9/M01/19/26/wKhkGWc788-AExHMAAH_iHNyAag8415.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市羅湖外國語學校2023-2024學年第二學期高三期末統一考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.92.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.273.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.44.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.5.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40406.將函數圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.7.已知定義在上的函數滿足,且在上是增函數,不等式對于恒成立,則的取值范圍是A. B. C. D.8.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.9.設集合則()A. B. C. D.10.函數(),當時,的值域為,則的范圍為()A. B. C. D.11.如圖所示,網格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.12.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角A,B,C的對邊分別為a,b,c,且,則________.14.已知實數,且由的最大值是_________15.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.16.實數滿足,則的最大值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.18.(12分)已知函數,曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數和的單調性;(3)設,求證:.19.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護人員和醫(yī)療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數:A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?20.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大??;(Ⅱ)已知,求的大小.21.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.22.(10分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.2、D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.3、D【解析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.4、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.5、D【解析】
計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.6、D【解析】
根據函數圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規(guī)律以及其有關性質,基礎題.7、A【解析】
根據奇偶性定義和性質可判斷出函數為偶函數且在上是減函數,由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數,圖象關于軸對稱又在上是增函數在上是減函數,即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數的奇偶性和單調性求解函數不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數單調性將函數值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.8、A【解析】
畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.9、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.10、B【解析】
首先由,可得的范圍,結合函數的值域和正弦函數的圖像,可求的關于實數的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數的值域,熟悉正弦函數的單調性和特殊角的三角函數值是解題的關鍵,側重考查數學抽象和數學運算的核心素養(yǎng).11、B【解析】
根據三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關鍵是要能由三視圖解析出原幾何體,從而解決問題.12、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.14、【解析】
將其轉化為幾何意義,然后根據最值的條件求出最大值【詳解】由化簡得,又實數,圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。15、【解析】
由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數的性質可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.16、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數的最優(yōu)解問題.線性目標函數的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.【點睛】本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、(1)(2)為減函數,為增函數.(3)證明見解析【解析】
(1)求出導函數,求出切線方程,令得切線的縱截距,可得(必須利用函數的單調性求解);(2)求函數的導數,由導數的正負確定單調性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結論.【詳解】解:(1)對求導,得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導得,因此為增函數:故是唯一解.(2)由(1)可知,,因為,所以為減函數.因為,所以為增函數.(3)證明:由,易得.由(2)可知,在上為減函數.因此,當時,,即.令,得,即.因此,當時,.所以成立.下面證明:.由(2)可知,在上為增函數.因此,當時,,即.因此,即.令,得,即.當時,.因為,所以,所以.所以,當時,.所以,當時,成立.綜上所述,當時,成立.【點睛】本題考查導數的幾何意義,考查用導數研究函數的單調性,考查用導數證明不等式.本題中不等式的證明,考查了轉化與化歸的能力,把不等式變形后利用第(2)小題函數的單調性得出數列的不等關系:,.這是最關鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.19、每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數取最小值的整數解,即可得解.【詳解】設每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數,如圖所示,為不等式組表示的可行域,由圖可知,當直線經過點時,最小,解方程組,解得,,然而,故點不是最優(yōu)解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【點睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數解問題,考查了數形結合的思想,解題關鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數,同時注意整點的選取,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理邊化角,再結合轉化即可求解;(Ⅱ)可設,由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進而得解【詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流管理中的客戶服務優(yōu)化
- 現代醫(yī)療辦公環(huán)境的電氣化改造
- 國慶節(jié)包廂套餐活動方案
- 2024年五年級品社下冊《祖國不會忘記他們》說課稿 山東版
- 2023二年級數學上冊 6 表內乘法(二)綜合與實踐 量一量比一比說課稿 新人教版
- 1 北京的春節(jié) 說課稿-2023-2024學年語文六年級下冊統編版
- 9《生活離不開他們》 感謝他們的勞動 說課稿-2023-2024學年道德與法治四年級下冊統編版
- Unit 2 Weather Lesson 1(說課稿設計)-2023-2024學年人教新起點版英語二年級下冊001
- 2024年高中英語 Unit 3 Welcome to the unit and reading I說課稿 牛津譯林版選擇性必修第二冊
- 2024-2025學年高中歷史 第五單元 經濟全球化的趨勢 第26課 經濟全球化的趨勢(1)教學說課稿 岳麓版必修2
- 二零二五年度大型自動化設備買賣合同模板2篇
- 江西省部分學校2024-2025學年高三上學期1月期末英語試題(含解析無聽力音頻有聽力原文)
- GA/T 2145-2024法庭科學涉火案件物證檢驗實驗室建設技術規(guī)范
- 寵物護理行業(yè)客戶回訪制度構建
- 電廠檢修管理
- 機動車屬性鑒定申請書
- 2024年中考語文試題分類匯編:非連續(xù)性文本閱讀(學生版)
- 2024年度窯爐施工協議詳例細則版B版
- 2024年北京市平谷區(qū)中考英語二模試卷
- 第一屆山東省職業(yè)能力大賽濟南市選拔賽制造團隊挑戰(zhàn)賽項目技術工作文件(含樣題)
- 尿毒癥替代治療
評論
0/150
提交評論