版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.關于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍為()A.m≥ B.m< C.m= D.m<﹣2.根據(jù)阿里巴巴公布的實時數(shù)據(jù),截至年月日時,天貓雙全球狂歡節(jié)總交易額約億元,用科學記數(shù)法表示為()A. B. C. D.3.對于一個函數(shù),自變量x取a時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,且x1<1<x2,則c的取值范圍是()A.c<﹣3 B.c<﹣2 C.c< D.c<14.若一個正多邊形的邊長與半徑相等,則這個正多邊形的中心角是()A.45° B.60° C.72° D.90°5.如圖,拋物線與軸交于、兩點,點在一次函數(shù)的圖像上,是線段的中點,連結(jié),則線段的最小值是()A. B. C. D.6.拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示.下列敘述中:①;②關于的方程的兩個根是;③;④;⑤當時,隨增大而增大.正確的個數(shù)是()A.4 B.3 C.2 D.17.已知在直角坐標平面內(nèi),以點P(﹣2,3)為圓心,2為半徑的圓P與x軸的位置關系是()A.相離 B.相切C.相交 D.相離、相切、相交都有可能8.如圖是由個完全相同的小正方形搭成的幾何體,如果將小正方體放到小正方體的正上方,則它的()A.主視圖會發(fā)生改變 B.俯視圖會發(fā)生改變C.左視圖會發(fā)生改變 D.三種視圖都會發(fā)生改變9.如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上且A(﹣3,0),B(2,b),則正方形ABCD的面積是()A.20 B.16 C.34 D.2510.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣11.如圖,在△OAB中,頂點O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2019次旋轉(zhuǎn)結(jié)束時,點D的坐標為()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)12.一個圓柱和一個正方體按如圖所示放置,則其俯視圖為()A. B.C. D.二、填空題(每題4分,共24分)13.一元二次方程的兩實數(shù)根分別為,計算的值為__________.14.直角三角形ABC中,∠B=90°,若cosA=,AB=12,則直角邊BC長為___.15.如圖,將半徑為2,圓心角為90°的扇形BAC繞點A逆時針旋轉(zhuǎn)60°,點B、C的對應點分別為D、E,點D在上,則陰影部分的面積為_____.16.若拋物線y=x2﹣4x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),則關于x的方程x2﹣4x+m=k(x﹣1)﹣11的解為_____.17.如圖,點B是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數(shù)y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.18.如圖,在坐標系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn),連續(xù)翻轉(zhuǎn)2019次,點的落點依次為,,,…,則的坐標為__________.三、解答題(共78分)19.(8分)如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.①請判斷“勻稱中線”是哪條邊上的中線,②求BC:AC:AB的值.(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉(zhuǎn)45°得到△ADE,點B的對應點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.20.(8分)如圖,在△ABC中,∠CAB=90°,D是邊BC上一點,,E為線段AD的中點,連結(jié)CE并延長交AB于點F.(1)求證:AD⊥BC.(2)若AF:BF=1:3,求證:CD:DB=1:2.21.(8分)已知關于的方程(1)求證:無論為何值,方程總有實數(shù)根.(2)設,是方程的兩個根,記,S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.22.(10分)如圖,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的長.23.(10分)如圖,在平面直角坐標系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.(1)求拋物線的解析式;(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE最大.①求點P的坐標和PE的最大值.②在直線PD上是否存在點M,使點M在以AB為直徑的圓上;若存在,求出點M的坐標,若不存在,請說明理由.24.(10分)如圖,拋物線的圖象與正比例函數(shù)的圖象交于點,與軸交于點.(1)求拋物線的解析式;(2)將繞點逆時針旋轉(zhuǎn)得到,該拋物線對稱軸上是否存在點,使有最小值?若存在,請求出點的坐標;若不存在,請說明理由.25.(12分)如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P為BC的中點,動點Q從點P出發(fā),沿射線PC方向以cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設點Q運動的時間為t秒.(1)當t=2.5s時,判斷直線AB與⊙P的位置關系,并說明理由.(2)已知⊙O為Rt△ABC的外接圓,若⊙P與⊙O相切,求t的值.26.如圖,已知,點、坐標分別為、.(1)把繞原點順時針旋轉(zhuǎn)得,畫出旋轉(zhuǎn)后的;(2)在(1)的條件下,求點旋轉(zhuǎn)到點經(jīng)過的路徑的長.
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數(shù)根,故選B.2、A【解析】根據(jù)科學計數(shù)法的表示方法即可得出答案.【詳解】根據(jù)科學計數(shù)法的表示方法可得:2135應該表示為2.135×103,故答案選擇A.【點睛】本題考查的是科學計數(shù)法的表示方式:(,n為正整數(shù)).3、B【分析】由題意知二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,由此可知方程x2+x+c=0有兩個不相等的實數(shù)根,即△=1-4c>0,再由題意可得函數(shù)y=x2+x+c=0在x=1時,函數(shù)值小于0,即1+1+c<0,由此可得關于c的不等式組,解不等式組即可求得答案.【詳解】由題意知二次函數(shù)y=x2+2x+c有兩個相異的不動點x1、x2,所以x1、x2是方程x2+2x+c=x的兩個不相等的實數(shù)根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的兩個不相等實數(shù)根為x1、x2,x1<1<x2,所以函數(shù)y=x2+x+c=0在x=1時,函數(shù)值小于0,即1+1+c<0,綜上則,解得c<﹣2,故選B.【點睛】本題考查了二次函數(shù)與一元二次方程的關系,正確理解題中的定義,熟練掌握二次函數(shù)與一元二次方程的關系是解題的關鍵.4、B【分析】利用正多邊形的邊長與半徑相等得到正多邊形為正六邊形,然后根據(jù)正多邊形的中心角定義求解.【詳解】解:因為正多邊形的邊長與半徑相等,所以正多邊形為正六邊形,因此這個正多邊形的中心角為60°.
故選B.【點睛】本題主要考查的是正多邊形的中心角的概念,正確的理解正多邊形的邊長與半徑相等得到正多邊形為正六邊形是解決問題的關鍵.5、A【分析】先求得A、B兩點的坐標,設,根據(jù)之間的距離公式列出關于的函數(shù)關系式,求得其最小值,即可求得答案.【詳解】令,則,解得:,∴A、B兩點的坐標分別為:,設點的坐標為,∴,∵,∴當時,有最小值為:,即有最小值為:,∵A、B為拋物線的對稱點,對稱軸為y軸,∴O為線段AB中點,且Q為AP中點,∴.故選:A.【點睛】本題考查了二次函數(shù)與一次函數(shù)的綜合問題,涉及到的知識有:兩點之間的距離公式,三角形中位線的性質(zhì),二次函數(shù)的最值問題,利用兩點之間的距離公式求得的最小值是解題的關鍵.6、B【分析】由拋物線的對稱軸是,可知系數(shù)之間的關系,由題意,與軸的一個交點坐標為,根據(jù)拋物線的對稱性,求得拋物線與軸的一個交點坐標為,從而可判斷拋物線與軸有兩個不同的交點,進而可轉(zhuǎn)化求一元二次方程根的判別式,當時,代入解析式,可求得函數(shù)值,即可判斷其的值是正數(shù)或負數(shù).【詳解】拋物線的對稱軸是;③正確,與軸的一個交點坐標為拋物線與與軸的另一個交點坐標為關于的方程的兩個根是;②正確,當x=1時,y=;④正確拋物線與軸有兩個不同的交點,則①錯誤;當時,隨增大而減小當時,隨增大而增大,⑤錯誤;②③④正確,①⑤錯誤故選:B.【點睛】本題考查二次函數(shù)圖象的基本性質(zhì):對稱性、增減性、函數(shù)值的特殊性、二次函數(shù)與一元二次方程的綜合運用,是常見考點,難度適中,熟練掌握二次函數(shù)圖象基本性質(zhì)是解題關鍵.7、A【解析】先求出點P到x軸的距離,再根據(jù)直線與圓的位置關系得出即可.【詳解】解:點P(-2,3)到x軸的距離是3,3>2,所以圓P與軸的位置關系是相離,故選A.【點睛】本題考查了坐標與圖形的性質(zhì)和直線與圓的位置關系等知識點,能熟記直線與圓的位置關系的內(nèi)容是解此題的關鍵.8、A【分析】根據(jù)從上面看得到的圖形事俯視圖,從正面看得到的圖形是主視圖,從左邊看得到的圖形是左視圖,可得答案.【詳解】如果將小正方體放到小正方體的正上方,則它的主視圖會發(fā)生改變,俯視圖和左視圖不變.故選.【點睛】本題考查了簡單組合體的三視圖,從上面看得到的圖形是俯視圖,從正面看得到的圖形是主視圖,從左邊看得到的圖形是左視圖.9、C【分析】作BM⊥x軸于M.只要證明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解決問題.【詳解】解:作軸于.四邊形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面積,故選:.【點睛】本題考查正方形的性質(zhì)、坐標與圖形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關鍵是學會添加常用輔助線構(gòu)造全等三角形解決問題,屬于中考??碱}型.10、C【分析】利用一元二次方程的公式法求解可得.【詳解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,則x==1±,即x1=1+,x2=1﹣,故選:C.【點睛】本題考查了一元二次方程的解法,根據(jù)一元二次方程的特征,靈活選擇解法是解題的關鍵.11、C【分析】先求出AB=1,再利用正方形的性質(zhì)確定D(-3,10),由于2019=4×504+3,所以旋轉(zhuǎn)結(jié)束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)3次,由此求出點D坐標即可.【詳解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四邊形ABCD為正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一個循環(huán),第2019次旋轉(zhuǎn)結(jié)束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn)3次,每次旋轉(zhuǎn),剛好旋轉(zhuǎn)到如圖O的位置.∴點D的坐標為(﹣10,﹣3).故選:C.【點睛】本題考查了坐標與圖形變化-旋轉(zhuǎn):圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,10°,90°,180°.12、D【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在俯視圖中.【詳解】解:一個圓柱和一個正方體按如圖所示放置,則其俯視圖為左邊是一個圓,右邊是一個正方形.故選:D.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.二、填空題(每題4分,共24分)13、-10【分析】首先根據(jù)一元二次方程根與系數(shù)的關系求出和,然后代入代數(shù)式即可得解.【詳解】由已知,得∴∴故答案為-10.【點睛】此題主要考查根據(jù)一元二次方程根與系數(shù)的關系求代數(shù)式的值,熟練掌握,即可解題.14、1【分析】先利用三角函數(shù)解直角三角形,求得AC=20,再根據(jù)勾股定理即可求解.【詳解】解:∵在直角三角形ABC中,∠B=90°,cosA=,AB=12,∴cosA===,∴AC=20,∴BC===1.故答案是:1.【點睛】此題主要考查勾股定理、銳角三角函數(shù)的定義,正確理解銳角三角函數(shù)的定義是解題關鍵.15、【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.【詳解】連接BD,過點B作BN⊥AD于點N,∵將半徑為2,圓心角為90°的扇形BAC繞A點逆時針旋轉(zhuǎn)60°,∴∠BAD=60°,AB=AD,∴△ABD是等邊三角形,∴∠ABD=60°,則∠ABN=30°,故AN=1,BN=,S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案為.【點睛】考查了扇形面積求法以及等邊三角形的判定與性質(zhì),正確得出△ABD是等邊三角形是解題關鍵.16、x1=2,x2=1【分析】根據(jù)拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),可以求得m和k的值,然后代入題目中的方程,即可解答本題.【詳解】解:∵拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴拋物線為y=x2﹣1x﹣5,直線y=2x﹣13,∴所求方程為x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案為:x1=2,x2=1.【點睛】本題主要考查的是二次函數(shù)與一次函數(shù)的交點問題,交點既滿足二次函數(shù)也滿足一次函數(shù),帶入即可求解.17、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于設A的縱坐標為b18、(2326,0)【分析】根據(jù)題意連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移2.由于2029=336×6+3,因此點向右平移2322(即336×2)即可到達點,根據(jù)點的坐標就可求出點的坐標.【詳解】解:連接AC,如圖所示:∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=2,∴AC=2.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如上圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵2029=336×6+3,∴點向右平移2322(即336×2)到點.∵的坐標為(2,0),∴的坐標為(2+2322,0),∴的坐標為(2326,0).故答案為:(2326,0).【點睛】本題考查菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識,考查操作、探究、發(fā)現(xiàn)規(guī)律的能力,發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移2”是解決本題的關鍵.三、解答題(共78分)19、(1)①“勻稱中線”是BE,它是AC邊上的中線,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“勻稱中線”.理由見解析.【分析】(1)①先作出Rt△ABC的三條中線AD、BE、CF,然后利用勻稱中線的定義分別驗證即可得出答案;②設AC=2a,利用勾股定理分別把BC,AB的長度求出來即可得出答案.(2)由②知:AC:AD:CD=,設AC=,則AD=2a,CD=,過點C作CH⊥AB,垂足為H,利用的面積建立一個關于a的方程,解方程即可求出CD的長度;假設CM是△ACD的“勻稱中線”,看能否與已知的定理和推論相矛盾,如果能,則說明假設不成立,如果不能推出矛盾,說明假設成立.【詳解】(1)①如圖①,作Rt△ABC的三條中線AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“勻稱中線”.又在Rt△ACD中,AD>AC>BC,即AD不是“勻稱中線”.∴“勻稱中線”是BE,它是AC邊上的中線,②設AC=2a,則CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋轉(zhuǎn)可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“勻稱三角形”.由②知:AC:AD:CD=設AC=,則AD=2a,CD=,如圖②,過點C作CH⊥AB,垂足為H,則∠AHC=90°,∵∠BAC=45°,∴∵解得a=2,a=﹣2(舍去),∴判斷:CM不是△ACD的“勻稱中線”.理由:假設CM是△ACD的“勻稱中線”.則CM=AD=2AM=4,AM=2,∴又在Rt△CBH中,∠CHB=90°,CH=,BH=4-,∴即這與∠AMC=∠B相矛盾,∴假設不成立,∴CM不是△ACD的“勻稱中線”.【點睛】本題主要為材料理解題,掌握勻稱三角形和勻稱中線的意義是解題的關鍵.20、(1)見解析;(2)見解析.【分析】(1)由等積式轉(zhuǎn)化為比例式,再由相似三角形的判定定理,證明△ABD∽CBA,從而得出∠ADB=∠CAB=90°;(2)過點D作DG∥AB交CF于點G,由E為AD的中點,可得△DGE≌△AFE,得出AF=DG,再由平行線分線段成比例可得出結(jié)果.【詳解】證明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)過點D作DG∥AB交CF于點G,∵E為AD的中點,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.【點睛】本題考查相似三角形的判定與性質(zhì),遇到比例式或等積式就要考慮轉(zhuǎn)化為三角形相似來解決問題.21、(1)見解析;(2)時,S的值為2【解析】(1)分兩種情況討論:①當k=1時,方程是一元一次方程,有實數(shù)根;②當k≠1時,方程是一元二次方程,所以證明判別式是非負數(shù)即可;
(2)由韋達定理得,代入到中,可求得k的值.【詳解】解:(1)①當,即k=1時,方程為一元一次方程,∴是方程的一個解.②當時,時,方程為一元二次方程,則,∴方程有兩不相等的實數(shù)根.綜合①②得,無論k為何值,方程總有實數(shù)根.(2)S的值能為2,根據(jù)根與系數(shù)的關系可得∴,即,解得,∵方程有兩個根,∴∴應舍去,∴時,S的值為2【點睛】本題考查了根與系數(shù)的關系及根的判別式,熟練掌握,是解題的關鍵.22、DE=8.【分析】先根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)證得,再根據(jù)平行線分線段成比例即可得.【詳解】如圖,CD平分又,即故DE的長為8.【點睛】本題考查了角平分線的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)、平行線分線段成比例,通過等角對等邊證出是解題關鍵.23、(1)y=﹣x2﹣3x+4;(2)①,P②M(,)或(,)【解析】(1)先根據(jù)已知求點A的坐標,利用待定系數(shù)法求二次函數(shù)的解析式;(2)①根據(jù)A(﹣2,6),B(1,0),求得AB的解析式為:y=﹣2x+2,設P(a,﹣a2﹣3a+4),則E(a,﹣2a+2),利用PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣(a+)2+,根據(jù)二次函數(shù)的圖像與性質(zhì)即求解;②根據(jù)點M在以AB為直徑的圓上,得到∠AMB=90°,即AM2+BM2=AB2,求出,,AB2故可列出方程求解.【詳解】解:(1)∵B(1,0)∴OB=1,∵OC=2OB=2,∴BC=3,C(﹣2,0)Rt△ABC中,tan∠ABC=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式為:y=﹣2x+2,設P(a,﹣a2﹣3a+4),則E(a,﹣2a+2),∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+∴當a=時,PE=,此時P(,)②∵M在直線PD上,且P(,),∴+AB2=32+62=45,∵點M在以AB為直徑的圓上此時∠AMB=90°,∴AM2+BM2=AB2,∴++=45解得:,∴M(,)或(,)【點睛】此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關鍵是注意方程思想的應用.24、(1);(2)存在,.【分析】(1)將點A的坐標代入直線y=x解得:k=3,則點A(3,3),將點A、B的坐標代入拋物線表達式,即可求解;(2)將△ABO繞點O逆時針旋轉(zhuǎn)90°得到△B1A1O,則點A1、B1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人房屋裝修貸款合同模板8篇
- 2025年度城市更新項目土地使用權(quán)收購協(xié)議4篇
- 二零二五版貨運車輛租賃合同示范文本(含實時跟蹤服務)2篇
- 個人房屋建筑施工安全合同2024年度2篇
- 二零二五版虛擬現(xiàn)實(VR)教育培訓服務合同
- 科學課堂上的商業(yè)思維啟蒙-小學案例分享
- 教育信息化與嵌入式技術的融合路徑
- 二零二五版?zhèn)€人獨資企業(yè)股權(quán)出售與競業(yè)禁止協(xié)議3篇
- 二零二五年度物業(yè)服務合同:某大型商場物業(yè)服務管理協(xié)議6篇
- 安裝購銷合同
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- GB/T 44888-2024政務服務大廳智能化建設指南
- 2023-2024學年江西省萍鄉(xiāng)市八年級(上)期末物理試卷
- 四則混合運算100道題四年級上冊及答案
- 四川省高職單招電氣技術類《電子基礎》歷年考試真題試題庫(含答案)
- 2024年江西生物科技職業(yè)學院單招職業(yè)技能測試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓課件
- 2024版《建設工程開工、停工、復工安全管理臺賬表格(流程圖、申請表、報審表、考核表、通知單等)》模版
- 酒店人防管理制度
- 油田酸化工藝技術
評論
0/150
提交評論