江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮卷含解析_第1頁
江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮卷含解析_第2頁
江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮卷含解析_第3頁
江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮卷含解析_第4頁
江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省宜春市高安市高安中學2024屆中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.2.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°3.兩個一次函數(shù),,它們在同一直角坐標系中的圖象大致是()A. B. C. D.4.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.5.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是A.20、20 B.30、20 C.30、30 D.20、306.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+57.的倒數(shù)的絕對值是()A. B. C. D.8.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數(shù)是160B.乙組同學身高的中位數(shù)是161C.甲組同學身高的平均數(shù)是161D.兩組相比,乙組同學身高的方差大9.tan45o的值為()A. B.1 C. D.10.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:x2y﹣4xy+4y=_____.12.如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么cos∠EFC的值是.13.若一個多邊形的內(nèi)角和為1080°,則這個多邊形的邊數(shù)為__________.14.已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為_____.15.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)16.如圖,每一幅圖中有若干個大小不同的菱形,第1幅圖中有1個,第2幅圖中有3個,第3幅圖中有5個,則第4幅圖中有_____個,第n幅圖中共有_____個.三、解答題(共8題,共72分)17.(8分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.18.(8分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.19.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.20.(8分)在我校舉辦的“讀好書、講禮儀”活動中,各班積極行動,圖書角的新書、好書不斷增多,除學校購買的圖書外,還有師生捐獻的圖書,下面是九(1)班全體同學捐獻圖書情況的統(tǒng)計圖(每人都有捐書).請你根據(jù)以上統(tǒng)計圖中的信息,解答下列問題:該班有學生多少人?補全條形統(tǒng)計圖.九(1)班全體同學所捐圖書是6本的人數(shù)在扇形統(tǒng)計圖中所對應扇形的圓心角為多少度?請你估計全校2000名學生所捐圖書的數(shù)量.21.(8分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.22.(10分)先化簡,再求值:x223.(12分)鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.據(jù)調查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?在實際銷售時,由于天氣和運輸?shù)脑?,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結果該月水果店銷售該水果禮盒的利潤達到了元,求的值.24.已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q.(1)求AB的長;(2)當BQ的長為時,請通過計算說明圓P與直線DC的位置關系.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.2、D【解析】

根據(jù)平行線的性質即可得到∠2=∠ABC+∠1,即可得出結論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.3、B【解析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經(jīng)過的象限以及與y軸的交點位置,即可得解.【詳解】解:由圖可知,A、B、C選項兩直線一條經(jīng)過第一三象限,另一條經(jīng)過第二四象限,

所以,a、b異號,

所以,經(jīng)過第一三象限的直線與y軸負半軸相交,經(jīng)過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經(jīng)過第二、四象限,

所以,兩直線都與y軸負半軸相交,不符合.

故選:B.【點睛】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經(jīng)過第一三象限,k<0時,一次函數(shù)圖象經(jīng)過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負半軸相交.4、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.5、C【解析】分析:由表提供的信息可知,一組數(shù)據(jù)的眾數(shù)是這組數(shù)中出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)則是將這組數(shù)據(jù)從小到大(或從大到?。┮来闻帕袝r,處在最中間位置的數(shù),據(jù)此可知這組數(shù)據(jù)的眾數(shù),中位數(shù).詳解:根據(jù)右圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是30,30.故選C.點睛:考查眾數(shù)和中位數(shù)的概念,熟記概念是解題的關鍵.6、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關鍵.7、D【解析】

直接利用倒數(shù)的定義結合絕對值的性質分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數(shù)的定義與絕對值的性質.8、D【解析】

根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學身高的眾數(shù)是160,此選項正確;B.乙組同學身高的中位數(shù)是161,此選項正確;C.甲組同學身高的平均數(shù)是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計算公式是解題的關鍵.9、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.10、B【解析】分析:首先得到當點E旋轉至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉至y軸上時DE最??;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質,解題的關鍵是從圖形中整理出直角三角形.二、填空題(本大題共6個小題,每小題3分,共18分)11、y(x-2)2【解析】

先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.12、.【解析】試題分析:根據(jù)翻轉變換的性質得到∠AFE=∠D=90°,AF=AD=5,根據(jù)矩形的性質得到∠EFC=∠BAF,根據(jù)余弦的概念計算即可.由翻轉變換的性質可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點:軸對稱的性質,矩形的性質,余弦的概念.13、1【解析】

根據(jù)多邊形內(nèi)角和定理:(n﹣2)?110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【詳解】解:設多邊形邊數(shù)有x條,由題意得:110(x﹣2)=1010,解得:x=1,故答案為:1.【點睛】此題主要考查了多邊形內(nèi)角和定理,關鍵是熟練掌握計算公式:(n﹣2)?110(n≥3).14、1【解析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個菱形的面積為:AC?BD=×6×8=1.15、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結合圖形與已知條件靈活應用全等三角形的判定方法是解題的關鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.16、72n﹣1【解析】

根據(jù)題意分析可得:第1幅圖中有1個,第2幅圖中有2×2-1=3個,第3幅圖中有2×3-1=5個,…,可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個,繼而即可得出答案.【詳解】解:根據(jù)題意分析可得:第1幅圖中有1個.

第2幅圖中有2×2-1=3個.

第3幅圖中有2×3-1=5個.

第4幅圖中有2×4-1=7個.

….

可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個.

故第n幅圖中共有(2n-1)個.

故答案為7;2n-1.點睛:考查規(guī)律型中的圖形變化問題,難度適中,要求學生通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律.三、解答題(共8題,共72分)17、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質,可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形.AE=AB-BE=12-4=8,設DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,解得:x=1.則DE=4+1=2.【點睛】本題考查了全等三角形的判定和性質以及正方形的性質,解決本題的關鍵是注意每個題目之間的關系,正確作出輔助線.18、(1)背水坡的長度為米;(1)壩底的長度為116米.【解析】

(1)分別過點、作,垂足分別為點、,結合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過點、作,垂足分別為點、,根據(jù)題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長度為米.(1)在中,,∴(米),∴(米)答:壩底的長度為116米.【點睛】本題考查的知識點是解直角三角形的應用-坡度坡角問題,解題的關鍵是熟練的掌握解直角三角形的應用-坡度坡角問題.19、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質進行對應邊的轉化.20、(1)50;(2)詳見解析;(3)36°;(4)全校2000名學生共捐6280冊書.【解析】

(1)根據(jù)捐2本的人數(shù)是15人,占30%,即可求出該班學生人數(shù);(2)根據(jù)條形統(tǒng)計圖求出捐4本的人數(shù)為,再畫出圖形即可;(3)用360°乘以所捐圖書是6本的人數(shù)所占比例可得;(4)先求出九(1)班所捐圖書的平均數(shù),再乘以全校總人數(shù)2000即可.【詳解】(1)∵捐2本的人數(shù)是15人,占30%,∴該班學生人數(shù)為15÷30%=50人;(2)根據(jù)條形統(tǒng)計圖可得:捐4本的人數(shù)為:50﹣(10+15+7+5)=13;補圖如下;(3)九(1)班全體同學所捐圖書是6本的人數(shù)在扇形統(tǒng)計圖中所對應扇形的圓心角為360°×=36°.(4)∵九(1)班所捐圖書的平均數(shù)是;(1×10+2×15+4×13+5×7+6×5)÷50=,∴全校2000名學生共捐2000×=6280(本),答:全校2000名學生共捐6280冊書.【點睛】本題考查的是條形統(tǒng)計圖,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù),用到的知識點是眾數(shù)、中位數(shù)、平均數(shù).21、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據(jù)m=FG即可得m的值;②設點F與點G的坐標,根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據(jù)兩點關系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論