遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題含解析_第1頁
遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題含解析_第2頁
遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題含解析_第3頁
遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題含解析_第4頁
遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽市蘇家屯區(qū)市級名校2024屆中考三模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.462.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關系的是()A. B. C. D.3.的倒數(shù)是()A. B.-3 C.3 D.4.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.45.若x=-2是關于x的一元二次方程x2-ax+a2=0的一個根,則a的值為()A.1或4 B.-1或-4 C.-1或4 D.1或-46.如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),則圖中點C對應的數(shù)是()A.﹣2 B.0 C.1 D.47.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.28.已知,則的值為A. B. C. D.9.下列運算不正確的是A.a5+C.2a210.如果一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,那么實數(shù)m的取值為()A.m> B.m C.m= D.m=11.如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經過點C,則A.33B.32C.212.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在函數(shù)y=x-1的表達式中,自變量x的取值范圍是.14.如圖,在平面直角坐標系中,正方形ABOC和正方形DOFE的頂點B,F(xiàn)在x軸上,頂點C,D在y軸上,且S△ADC=4,反比例函數(shù)y=(x>0)的圖像經過點E,則k=_______。15.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數(shù)學成就.《九章算術》中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,可列方程組為_____.16.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).17.閱讀材料:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識可知:當A、C、E在一條直線上時,x=時,AC+CE的最小值為1.根據以上閱讀材料,可構圖求出代數(shù)式的最小值為_____.18.一個圓錐的側面展開圖是半徑為8cm、圓心角為120°的扇形,則此圓錐底面圓的半徑為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調查中抽樣人數(shù)為50人課外閱讀量為6本的同學為18人,因此這個人數(shù)對應的頻率就是=0.1.(1)統(tǒng)計表中的a、b、c的值;(2)請將頻數(shù)分布表直方圖補充完整;(3)求所有被調查學生課外閱讀的平均本數(shù);(4)若該校八年級共有600名學生,你認為根據以上調查結果可以估算分析該校八年級學生課外閱讀量為7本和8本的總人數(shù)為多少嗎?請寫出你的計算過程.20.(6分)已知關于的一元二次方程.試證明:無論取何值此方程總有兩個實數(shù)根;若原方程的兩根,滿足,求的值.21.(6分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.22.(8分)如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.求a,k的值;已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數(shù)的點叫做整點.①當時,直接寫出區(qū)域內的整點個數(shù);②若區(qū)域內的整點個數(shù)不超過8個,結合圖象,求m的取值范圍.23.(8分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°24.(10分)如圖,某市郊外景區(qū)內一條筆直的公路a經過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).25.(10分)如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數(shù)量關系是,位置關系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚€等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.26.(12分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內,P′A2取得最小值時,求m的值及這個最小值.27.(12分)山地自行車越來越受中學生的喜愛.一網店經營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.求二月份每輛車售價是多少元?為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網店仍可獲利35%,求每輛山地自行車的進價是多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.2、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.3、A【解析】

先求出,再求倒數(shù).【詳解】因為所以的倒數(shù)是故選A【點睛】考核知識點:絕對值,相反數(shù),倒數(shù).4、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B5、B【解析】

試題分析:把x=﹣2代入關于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案選B.考點:一元二次方程的解;一元二次方程的解法.6、C【解析】【分析】首先確定原點位置,進而可得C點對應的數(shù).【詳解】∵點A、B表示的數(shù)互為相反數(shù),AB=6∴原點在線段AB的中點處,點B對應的數(shù)為3,點A對應的數(shù)為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數(shù)是1,故選C.【點睛】本題主要考查了數(shù)軸,關鍵是正確確定原點位置.7、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.8、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.9、B【解析】(-2a10、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數(shù)根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.11、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質,掌握平行四邊形的性質以及反比例函數(shù)圖象上點的坐標特征是解題的關鍵.12、B【解析】

根據矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥1.【解析】

根據被開方數(shù)大于等于0列式計算即可得解.【詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負數(shù).14、8【解析】

設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根據S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到關于n的方程,解方程求得n的值,最后根據系數(shù)k的幾何意義求得即可.【詳解】設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,,∴=8,∵點E(n.n)在反比例函數(shù)y=kx(x>0)的圖象上,∴k==8,故答案為8.【點睛】本題考查了正方形的性質和反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.15、【解析】試題分析:根據“5頭牛,2只羊,值金10兩;2頭牛、5只羊,值金8兩.”列方程組即可.考點:二元一次方程組的應用16、4﹣π【解析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.17、4【解析】

根據已知圖象,重新構造直角三角形,利用三角形相似得出CD的長,進而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=5,DE=3,BD=12,當A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當x=時,代數(shù)式有最小值,此時為:.故答案是:4.【點睛】考查最短路線問題,利用了數(shù)形結合的思想,可通過構造直角三角形,利用勾股定理求解.18、cm【解析】試題分析:把扇形的弧長等于圓錐底面周長作為相等關系,列方程求解.設此圓錐的底面半徑為r,根據圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,r=cm.考點:圓錐側面展開扇形與底面圓之間的關系三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10、0.28、1;(2)見解析;(3)6.4本;(4)264名;【解析】

(1)根據百分比=計算即可;(2)求出a組人數(shù),畫出直方圖即可;(3)根據平均數(shù)的定義計算即可;(4)利用樣本估計總體的思想解決問題即可;【詳解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)補全圖形如下:(3)所有被調查學生課外閱讀的平均本數(shù)==6.4(本)(4)該校八年級共有600名學生,該校八年級學生課外閱讀7本和8本的總人數(shù)有600×=264(名).【點睛】本題考查頻數(shù)分布直方圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考常考題型.20、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據方程的系數(shù)結合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數(shù)根;(2)根據根與系數(shù)的關系可得出x1+x2=5、x1x2=6-p2-p,結合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數(shù)的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥1時,方程有兩個實數(shù)根”;(2)根據根與系數(shù)的關系結合x12+x22-x1x2=3p2+1,求出p值.21、(1)=4;(2)=n.【解析】

試題分析:(1)根據題目中的式子的變化規(guī)律可以寫出第四個等式;(2)根據題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個等式是:=4;(2)第n個等式是:=n.證明如下:∵===n∴第n個等式是:=n.點睛:本題考查規(guī)律型:數(shù)字的變化類,解答本題的關鍵是明確題目中式子的變化規(guī)律,求出相應的式子.22、(1),;(2)①3,②.【解析】

(1)將代入可求出a,將A點坐標代入可求出k;(2)①根據題意畫出函數(shù)圖像,可直接寫出區(qū)域內的整點個數(shù);②求出直線的表達式為,根據圖像可得到兩種極限情況,求出對應的m的取值范圍即可.【詳解】解:(1)將代入得a=4將代入,得(2)①區(qū)域內的整點個數(shù)是3②∵直線是過點且平行于直線∴直線的表達式為當時,即線段PM上有整點∴【點睛】本題考查了待定系數(shù)法求函數(shù)解析式以及函數(shù)圖像的交點問題,正確理解整點的定義并畫出函數(shù)圖像,運用數(shù)形結合的思想是解題關鍵.23、1.【解析】

直接利用零指數(shù)冪的性質以及特殊角的三角函數(shù)值和絕對值的性質分別化簡得出答案.【詳解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.24、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】

解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點C與景點D之間的距離約為4km.25、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結論仍然成立【解析】試題分析:(1)根據正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結論都能成立.考點:正方形,等邊三角形,三角形全等26、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據題意可以得到點P′的坐標,再根據函數(shù)解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據點P′落在直線BC上,從而可以求得m的值;②根據題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論