12.2.1全等三角形的判定(SSS)_第1頁(yè)
12.2.1全等三角形的判定(SSS)_第2頁(yè)
12.2.1全等三角形的判定(SSS)_第3頁(yè)
12.2.1全等三角形的判定(SSS)_第4頁(yè)
12.2.1全等三角形的判定(SSS)_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

12.2.1全等三角形的判定(SSS)知識(shí)回顧①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF

1、什么叫全等三角形?的兩個(gè)三角形叫全等三角形。2、全等三角形有什么性質(zhì)?全等三角形的對(duì)應(yīng)邊相等;對(duì)應(yīng)角相等尋找對(duì)應(yīng)元素的規(guī)律(1)有公共邊的,公共邊是對(duì)應(yīng)邊;(2)有公共角的,公共角是對(duì)應(yīng)角;(3)有對(duì)頂角的,對(duì)頂角是對(duì)應(yīng)角;(4)兩個(gè)全等三角形最大的邊是對(duì)應(yīng)邊,最小的邊是對(duì)應(yīng)邊;(5)兩個(gè)全等三角形最大的角是對(duì)應(yīng)角,最小的角是對(duì)應(yīng)角;問題一:根據(jù)全等三角形的性質(zhì),兩個(gè)三角形全等,它們的三個(gè)角、三條邊分別對(duì)應(yīng)相等,那么反過來,如果兩個(gè)三角形上述六個(gè)元素對(duì)應(yīng)相等,是否一定全等?問題二:兩個(gè)三角形全等,是否一定需要六個(gè)條件呢?如果只滿足上述一部分條件,是否我們也能說明他們?nèi)龋?.只給一個(gè)條件(一組對(duì)應(yīng)邊相等或一組對(duì)應(yīng)角相等)。①只給一條邊:②只給一個(gè)角:60°60°60°探究:4cm4cm4cm結(jié)論:滿足一個(gè)條件相等的兩個(gè)三角形不一定全等。2.給出兩個(gè)條件:①一邊一內(nèi)角:②兩內(nèi)角:③兩邊:30°30°30°30°30°50°50°2cm2cm4cm4cm結(jié)論:滿足兩個(gè)條件相等的兩個(gè)三角形不一定全等。如果給出三個(gè)條件畫三角形,你能說出有哪幾種可能的情況?①三邊;②兩邊一角;③兩角一邊;④三角。探究2:畫出一個(gè)△ABC

,再畫一個(gè)△A`B`C`使A`B`=AB,B`C`=BC,C`A`=CA。把畫好的△A`B`C`剪下,放到△ABC

上,他們?nèi)葐??畫?1.畫線段B`C`=BC;2.分別以B`、C`為圓心,線段AB、AC為半徑畫弧,兩弧交于點(diǎn)A`;3.連接線段A`B`、A`C`.在△ABC與△DEF中BACDEFAB=DEAC=DFBC=EF∴△ABC≌△DEF(SSS)結(jié)論:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.可簡(jiǎn)寫為邊邊邊或SSS判斷兩個(gè)三角形全等的推理過程,叫做證明三角形全等。如何用數(shù)學(xué)符號(hào)來表達(dá)呢?如圖,△ABC是一個(gè)鋼架,AB=AC,AD是連接點(diǎn)A與BC中點(diǎn)D的支架。求證△ABD?△ACD證明:∵D是BC的中點(diǎn)∴BD=CD在△ABC和△ACD中,AB=AC(已知)BD=CD(已證)AD=AD(公共邊)∴△ABD?△ACD(SSS)例題1例題1如圖,△ABC是一個(gè)剛架,AB=AC,AD是連結(jié)點(diǎn)A與BC中點(diǎn)D的支架.

求證:AD⊥BCACD12B∴∠1=∠2證明:在△ABD和△ACD中AB=ACAD=ADDB=DC∴△ABD≌△ACD(SSS)(已知)(公共邊)(已知)(全等三角形的對(duì)應(yīng)角相等)∴∠1=∠BDC=90°12∴AD⊥BC(平角定義)(垂直定義)例2:已知∠AOB求作:∠A′O′B′使∠A′O′B′=∠AOB作法:1、以點(diǎn)O為圓心,任意長(zhǎng)為半徑畫弧,分別交OA,OB于點(diǎn)C、D;2、畫一條射線O′A′,以點(diǎn)O′為圓心,OC長(zhǎng)為半徑畫弧,交O′A′于點(diǎn)C′;

3、以點(diǎn)C′為圓心,CD長(zhǎng)為半徑畫弧,與第2步中所畫的弧交于點(diǎn)D′;

4、過點(diǎn)D′畫射線O′B′,則∠A′O′B′=∠AOB如圖,AB=AC,AE=AD,BD=CE,求證:△AEB≌△ADC。證明:∵BD=CE∴BD-ED=CE-ED,即BE=CD。CABDE練一練在AEB和ADC中,AB=ACAE=ADBE=CD∴△AEB≌△ADC(sss)已知:如圖,AB=CD,AD=CB.求證:∠A=∠C證明:在△BAD和△DCB中AB=CDAD=CBBD=DB∴△BAD≌△DCB(SSS)∴∠A=∠C(已知)(已知)(公共邊)(全等三角形的對(duì)應(yīng)角相等)ABCD連結(jié)BD你能說明AB∥CD,AD∥BC嗎?練習(xí):如圖,AB=AC,BD=CD,BH=CH,圖中有幾組全等的三角形?它們?nèi)鹊臈l件是什么?HDCBA在ABH和ACH中,AB=ACBH=CHAH=AH∴△ABH≌△ACH(SSS)HDCBA在ABD和ACD中,AB=ACBD=CDAD=AD∴△ABD≌△ACD(SSS)在BDH和CDH中,BD=CDBH=CHDH=DH∴△BDH≌△CDH(SSS)小結(jié)三角形全等判定一:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等簡(jiǎn)寫:“邊邊邊”或“SSS”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論