江蘇省徐州市豐縣2023-2024學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案解析)_第1頁
江蘇省徐州市豐縣2023-2024學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案解析)_第2頁
江蘇省徐州市豐縣2023-2024學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案解析)_第3頁
江蘇省徐州市豐縣2023-2024學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案解析)_第4頁
江蘇省徐州市豐縣2023-2024學(xué)年九年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案解析)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年豐縣九年級(jí)(上)期中數(shù)學(xué)試卷一、選擇題(本大題共8小題,每小題3分,共24分)1.用配方法解方程x2-2x-8=0,下列配方正確的是()A.(x-1)2=8 B.(x-1)2=9 C.(x-1)2=82 D.(x-1)2=122.已知⊙O的半徑為2,點(diǎn)P在⊙O外,則OP的長不可能是()A.1 B.2.5 C.3.5 D.43.關(guān)于x的一元二次方程x2+mx=3x+5化為一般形式后不含一次項(xiàng),則m的值為()A.0 B.±3 C.3 D.-34.給出下列說法:①半徑相等的圓是等圓;②長度相等的弧是等??;③以2cm長為半徑的圓有無數(shù)個(gè);④平面上任意三點(diǎn)能確定一個(gè)圓,其中正確的有()A.②④ B.①③ C.①③④ D.①②③④5.關(guān)于二次函數(shù)y=2(x-1)2+3,下列說法正確的是()A.圖象的對(duì)稱軸是直線x=-1 B.圖象與x軸有兩個(gè)交點(diǎn)C.當(dāng)x>1時(shí),y的值隨x值的增大而增大 D.當(dāng)x=1時(shí),y取得最大值,且最大值為36.一種微波爐每臺(tái)成本價(jià)原來是500元,經(jīng)過兩次技術(shù)改進(jìn)后,成本降為256元,設(shè)平均每次降價(jià)的百分率為x,則下列方程正確的是()A.500(1-x)2=256B.256(1+x)2=500C.256(1+x2)=500D.500(1-2x)=4007.以正六邊形的頂點(diǎn)為旋轉(zhuǎn)中心,按順時(shí)針方向旋轉(zhuǎn),使得新正六邊形的頂點(diǎn)落在直線上,則正六邊形至少旋轉(zhuǎn)的度數(shù)為()A. B. C. D.8.二次函數(shù)的圖像如圖所示,若關(guān)于x的一元二次方程(t為實(shí)數(shù))的解滿足,則t的取值范圍是()A. B. C. D.二、填空題(本大題共10小題,每小題4分,共40分)9.拋物線與y軸的交點(diǎn)坐標(biāo)是.10.如圖,⊙O的半徑是5,∠AOB=60°,則AB=_____.11.若關(guān)于x的一元二次方程的一個(gè)根是,則的值是__.12.已知一元二次方程的兩個(gè)根為、,則的值為__.13.如圖,在⊙中,直徑與弦交于點(diǎn).,連接,過點(diǎn)的切線與的延長線交于點(diǎn).若,則__°.14.如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個(gè)扇形.若母線長l為9cm,圓錐的底面圓的半徑r為3cm,則扇形的圓心角為__°.15.二次函數(shù)的部分對(duì)應(yīng)值列表如下:x…0135…y…66…則一元二次方程的解為__.16.已知二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)公共點(diǎn),則k的取值范圍是__.17.如圖,已知拋物線經(jīng)過點(diǎn)A、B,且軸,,則__.18.如圖,點(diǎn)A是半圓上的三等分點(diǎn),B是弧的中點(diǎn),P是直徑上一動(dòng)點(diǎn).的半徑為2,寫出的最小值__.三、解答題(本大題共8小題,共76分)19.解方程:(1);(2).20.下表是二次函數(shù)的部分取值情況:x…0123…y…0c43n…根據(jù)表中信息,回答下列問題:(1)二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是,;(2)在圖中的平面直角坐標(biāo)系內(nèi)描點(diǎn)畫出該二次函數(shù)的圖象,觀察圖象,寫出時(shí)x的取值范圍;(3)該二次函數(shù)的圖象經(jīng)過怎樣平移可以得到的圖象?(4)若拋物線上兩點(diǎn)的橫坐標(biāo)滿足,則0(填“>”“<”或“=”).21.(1)教材重現(xiàn):在中,是所對(duì)的圓心角,是所對(duì)的圓周角,我們在數(shù)學(xué)課上探索兩者之間的關(guān)系時(shí),要根據(jù)圓心O與的位置關(guān)系進(jìn)行分類.圖1是其中一種情況,請你在圖2和圖3中畫出其它兩種情況的圖形,并從圖2,圖3中任選一種情況證明;(2)知識(shí)應(yīng)用:如圖4,點(diǎn)C在上,連接、,點(diǎn)P為外一點(diǎn),平分,交于點(diǎn)D,連接,若,,求證:為的切線.22.直播購物逐漸走進(jìn)了人們的生活.某電商在抖音上對(duì)一款成本價(jià)為30元的小商品進(jìn)行直播銷售,如果按每件60元銷售,每天可賣出20件.通過市場調(diào)查發(fā)現(xiàn),每件小商品售價(jià)每降低1元,日銷售量增加2件.商家想盡快銷售完該款商品,采取降價(jià)措施增加銷量.(1)若日利潤保持不變,每件售價(jià)應(yīng)定為多少元?(2)每件商品降價(jià)多少元時(shí)日利潤最大?23.河上有一座橋孔為拋物線形的拱橋,水面寬為6米時(shí),水面離橋孔頂部4米.如圖1,橋孔與水面交于A、B兩點(diǎn),以點(diǎn)A為坐標(biāo)原點(diǎn),所在水平線為橫軸,過原點(diǎn)的鉛垂線為縱軸,建立如圖所示的平面直角坐標(biāo)系.(1)請求出此拋物線對(duì)應(yīng)的二次函數(shù)表達(dá)式;(2)因降暴雨水位上升米,一艘裝滿貨物的小船,露出水面部分的高為,寬為(橫截面如圖2),暴雨后,這艘小船能從這座石拱橋下通過嗎?請說明理由.24.如圖,是的直徑,點(diǎn)A和點(diǎn)E是上位于的兩側(cè)的點(diǎn),,,垂足為D,、的延長線交于點(diǎn)G,的延長線交于點(diǎn)F.(1)判斷的形狀并說明理由;(2)若,,求的直徑的長.25.【問題提出】學(xué)習(xí)過扇形面積的計(jì)算方法后,小明、小麗和小宇開展以下學(xué)習(xí)討論:小明:三角形的中線可以把三角形的面積二等分,那么能不能畫一條線把扇形的面積二等分呢?小麗:可以,這是一條過圓心的直線……小明:可能是一條弧線嗎?小宇:根據(jù)扇形面積計(jì)算公式,扇形的圓心角和半徑?jīng)Q定扇形面積的大小,把問題轉(zhuǎn)化成,在原來扇形內(nèi)部作一個(gè)小扇形,它們的圓心角相等且面積比是,推算出此時(shí)兩個(gè)扇形的半徑比為a.小麗:我們以前遇到過一類特殊三角形兩邊的比值恰好也是a!……【嘗試解決】已知扇形,(1)請你用圓規(guī)和無刻度的直尺在圖1中,作出符合小麗所說方案的直線;(2)①小宇談話中提到的a的值為;②參考三位同學(xué)的談話,請你在圖2中用圓規(guī)和無刻度的直尺作一條以點(diǎn)O為圓心的圓弧,使扇形的面積被這條圓弧平分.(提醒:以上所有作圖均不寫作法,需保留作圖痕跡)26.如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,二次函數(shù)的圖像經(jīng)過點(diǎn)A、B.(1),;(2)若點(diǎn)M是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),過點(diǎn)M作垂直于x軸,垂足為點(diǎn)C,交直線于點(diǎn)D,連接,當(dāng)時(shí):①求點(diǎn)M的坐標(biāo);②直線上是否存在點(diǎn)E,使為直角三角形?若存在,直接寫出符合條件的所有點(diǎn)E的坐標(biāo);若不存在,請說明理由.(3)拋物線上是否存在點(diǎn)N(不與點(diǎn)A、B重合),使得O、A、B、N四點(diǎn)共圓,如果存在求出點(diǎn)N的坐標(biāo),如果不存在,請說明理由.參考答案一、選擇題(本大題共8小題,每小題3分,共24分)1.B【解析】本題考查了解一元二次方程,能夠正確配方是解此題的關(guān)鍵.先移項(xiàng),再配方,最后得出選項(xiàng)即可.【詳解】解:x2-2x-8=0,移項(xiàng),得x2-2x=8,配方得:x2-2x+1=8+1,(x-1)2=9.故選:B.2.A【解析】【分析】本題考查了點(diǎn)與圓的位置關(guān)系,當(dāng)點(diǎn)與圓心的距離d大于半徑r時(shí),點(diǎn)在圓外;當(dāng)點(diǎn)與圓心的距離d等于半徑r時(shí),點(diǎn)在圓上;當(dāng)點(diǎn)與圓心的距離d小于半徑r時(shí),點(diǎn)在圓內(nèi),由此可解.【詳解】解:A,時(shí),,點(diǎn)P在內(nèi),與已知矛盾,符合題意;B,時(shí),,點(diǎn)P在外;C,時(shí),,點(diǎn)P在外;D,時(shí),,點(diǎn)P在外;故選:A.3.C【解析】【分析】此題考查了一元二次方程定義,解題關(guān)鍵是理解一元二次方程的一般形式,將一元二次方程化為一般式,根據(jù)不含一次項(xiàng)可得一次項(xiàng)系數(shù)為0,求解即可.【詳解】解:方程化為一般形式為:由題意可得:解得故選:C4.B【解析】【分析】本題考查的是圓的認(rèn)識(shí),根據(jù)等圓、等弧和半圓的定義以及確定圓的條件,分別進(jìn)行判斷.【詳解】解:①半徑相等的圓是等圓,故①正確;②同圓或等圓中,長度相等的弧是等弧,故②不正確;③以長為半徑的圓有無數(shù)個(gè),沒有指定圓心,故③正確;④平面上不共線的三點(diǎn)能確定一個(gè)圓,故④不正確;故選:B.5.C【解析】【分析】本題主要考查了二次函數(shù)圖象的性質(zhì),根據(jù)二次項(xiàng)系數(shù)大于0,以及解析式為頂點(diǎn)式可得二次函數(shù)開口向上,對(duì)稱軸為直線,由此可得當(dāng)時(shí),y的值隨x值的增大而增大且當(dāng)時(shí),y取得最小值,且最小值為3,則二次函數(shù)的函數(shù)值恒大于等于3,即二次函數(shù)與x軸沒有交點(diǎn),據(jù)此可得答案.【詳解】解:∵二次函數(shù)解析式為,,∴二次函數(shù)開口向上,對(duì)稱軸為直線,故A說法錯(cuò)誤,不符合題意;∴當(dāng)時(shí),y的值隨x值的增大而減小,當(dāng)時(shí),y的值隨x值的增大而增大,故C說法正確,符合題意;∴當(dāng)時(shí),y取得最小值,且最小值為3,故D說法錯(cuò)誤,不符合題意;∴,∴二次函數(shù)與x軸沒有交點(diǎn),故B說法錯(cuò)誤,不符合題意;故選C.6.A【解析】【分析】本題考查了一元二次方程的應(yīng)用.根據(jù)題意正確的列方程是解題的關(guān)鍵.由題意知,第一次降價(jià)后成本為,第二次降價(jià)后成本為,然后根據(jù)題意列方程即可.【詳解】解:由題意知,第一次降價(jià)后成本為,第二次降價(jià)后成本為,依題意得,,故選:A.7.B【解析】【分析】本題考查旋轉(zhuǎn)的性質(zhì)應(yīng)用,熟練掌握多邊形內(nèi)角和及外角和的計(jì)算方法是解題的關(guān)鍵,連接,根據(jù)正六邊形的外角為,可得,,再根據(jù),可得,進(jìn)而得到正六邊形至少旋轉(zhuǎn)的度數(shù).【詳解】解:連接,∵正六邊形的每個(gè)外角,∴正六邊形的每個(gè)內(nèi)角,∴,,∵∴∴∴正六邊形至少旋轉(zhuǎn)的度數(shù)為故選:B.8.D【解析】【分析】本題主要考查了拋物線與x軸的交點(diǎn),學(xué)會(huì)利用圖像法解決問題,畫出圖象是解決問題的關(guān)鍵.如圖,關(guān)于x的一元二次方的解就是拋物線與直線的交點(diǎn)的橫坐標(biāo),然后利用圖像法即可解決問題.【詳解】解:如圖:關(guān)于x的一元二次方程的解就是拋物線與直線的交點(diǎn)的橫坐標(biāo),∵,∴,∴拋物線的對(duì)稱軸為,且最大值為4,當(dāng)時(shí),由圖像可知關(guān)于x的一元二次方程(t為實(shí)數(shù)),在的范圍內(nèi)有解,∴解滿足,則t的取值范圍是.故選:D.二、填空題(本大題共10小題,每小題4分,共40分)9.【解析】【分析】本題主要考查對(duì)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征的理解和掌握,把代入拋物線中,求y的值,即可求出答案.知道拋物線與y軸交點(diǎn)的橫坐標(biāo)等于0是解此題的關(guān)鍵.【詳解】解:把代入拋物線,得:,∴拋物線與y軸的交點(diǎn)坐標(biāo)是,故答案為.10.5【解析】【分析】由OA=OB,得△OAB為等邊三角形進(jìn)行解答.【詳解】解:∵OA=OB=5,∠AOB=60°,∴△OAB等邊三角形,故AB=5,故答案為:5.【點(diǎn)睛】本題考查了圓的認(rèn)識(shí);等邊三角形的判定與性質(zhì),熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.11.2【解析】【分析】本題主要考查了一元二次方程解的定義,代數(shù)式求值,熟知一元二次方程解的定義是解題的關(guān)鍵.根據(jù)一元二次方程解的定義把代入到得出,然后進(jìn)行求解即可.【詳解】解:∵關(guān)于x的一元二次方程的一個(gè)解是,∴,∴,∴.故答案為:2.12.##【解析】【分析】本題考查了一元二次方程根與系數(shù)的關(guān)系:若是一元二次方程的兩根,,.根據(jù)一元二次方程根與系數(shù)的關(guān)系得出,將代數(shù)式化簡,然后整體代入即可求解.【詳解】解:∵一元二次方程的兩個(gè)根為,∴,∴,故答案為:.13.【解析】【分析】本題考查了切線的性質(zhì),圓周角定理,三角形外角的性質(zhì),解題的關(guān)鍵是熟悉圓的切線垂直于過切點(diǎn)的半徑和弧之間的關(guān)系.由得出,根據(jù),,即可求出的度數(shù),從而可求出,由是⊙的切線可得,在四邊形中,利用四邊形的內(nèi)角和即可求解.【詳解】,,是的外角,,,,是⊙的切線,,四邊形的內(nèi)角和為,,故答案為:.14.120【解析】【分析】本題考查圓錐側(cè)面展開圖的圓心角,根據(jù)圓錐的底面周長等于扇形的弧長,列出等式,求解即可.【詳解】解:由題意,得:,解得:;故答案為:120.15.0或2【解析】【分析】本題考查了二次函數(shù)的性質(zhì),以及二次函數(shù)與一元二次方程的關(guān)系,熟練掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.先求出對(duì)稱軸,由表格中的數(shù)據(jù)可知:當(dāng)時(shí),,利用二次函數(shù)的對(duì)稱性即可即可.掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.【詳解】解:由拋物線的對(duì)稱性質(zhì)知,對(duì)稱軸是直線.根據(jù)表格可知:當(dāng)時(shí),,根據(jù)二次函數(shù)的對(duì)稱性可知:當(dāng)時(shí),,所以一元二次方程的解為或.故答案為:0或2.16.且【解析】【分析】本題考查二次函數(shù)與軸的交點(diǎn),根據(jù),且解出的范圍即可求出答案.解題的關(guān)鍵是正確列出進(jìn)行計(jì)算.【詳解】解:由題意可知:且,解得:且,故答案為:且.17.##0.25【解析】【分析】本題考查了二次函數(shù)的圖象與性質(zhì),等腰三角形的判定與性質(zhì).熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.如圖,記與軸的交點(diǎn)為,圖象對(duì)稱軸為軸,則,,設(shè),則,解得,,或(舍去),則,,根據(jù),計(jì)算求解即可.【詳解】解:如圖,記與軸的交點(diǎn)為,∵,∴對(duì)稱軸軸,∵軸,,∴,∴,設(shè),將代入得,,解得,,或(舍去),∴,,,∴,,∴,故答案為:.18.【解析】【分析】作點(diǎn)A關(guān)于的對(duì)稱點(diǎn),由,得到當(dāng)點(diǎn),,三點(diǎn)共線時(shí),取得最小值,即的長度,連接交圓于P,根據(jù)題意得到,然后利用勾股定理求解即可.【詳解】作點(diǎn)A關(guān)于的對(duì)稱點(diǎn),∴∴∴當(dāng)點(diǎn),,三點(diǎn)共線時(shí),取得最小值,即的長度,∴連接交圓于P,則點(diǎn)P即是所求作的點(diǎn),∵A是半圓上一個(gè)三等分點(diǎn),∴,又∵點(diǎn)B是弧的中點(diǎn),∴∴在中,由勾股定理得:∴的最小值是.故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱的性質(zhì),兩點(diǎn)之間線段最短,勾股定理,以及圓周角定理,解決此題的關(guān)鍵是確定點(diǎn)P的位置.根據(jù)軸對(duì)稱的知識(shí),把兩條線段的和轉(zhuǎn)化為一條線段,根據(jù)已知條件發(fā)現(xiàn)等腰直角三角形.三、解答題(本大題共8小題,共76分)19.(1)(2)【解析】【分析】本題考查了解一元二次方程.(1)整理后,利用直接開平方法求解即可;(2)整理后,利用公式法求解即可.【小問1詳解】解:整理得,開方得,或,解得;【小問2詳解】解:原方程可化為,.,,,解得.20.(1),3(2),圖見解析(3)拋物線向左平移1個(gè)單位,向下平移4個(gè)單位即可得到的圖象(4)【解析】【分析】(1)將代入得,解得,,則,然后作答即可;(2)描點(diǎn)作圖,由圖象可知時(shí)x的取值范圍為,(3)根據(jù)左加右減、上加下減進(jìn)行作答即可;(4)由題意知,當(dāng)時(shí),隨的增大而減小,由,可得,然后求解判斷即可.【小問1詳解】解:將代入得,,解得,,∴,∴頂點(diǎn)坐標(biāo)為,故答案為:,3;【小問2詳解】解:作圖如下:∴時(shí)x的取值范圍為,故答案為:;【小問3詳解】解:∵∴拋物線向左平移1個(gè)單位,向下平移4個(gè)單位即可得到的圖象;【小問4詳解】解:由題意知,當(dāng)時(shí),隨的增大而減小,∵,∴,∴,故答案為:.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與性質(zhì),二次函數(shù)的平移,根據(jù)交點(diǎn)確定不等式的解集,畫二次函數(shù)圖象.熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.21.(1)見解析;(2)見解析【解析】【分析】(1)①連接,并延長交于點(diǎn),根據(jù)等邊對(duì)等角得,,再根據(jù)三角形外角的性質(zhì)即可求證結(jié)論;②連接,并延長交于點(diǎn)D,根據(jù)等邊對(duì)等角得,,再根據(jù)三角形外角的性質(zhì)即可求證結(jié)論.(2)根據(jù)圓周角定理得,再根據(jù)等邊三角形的判定及性質(zhì)得,,再根據(jù)等角對(duì)等邊及切線的判定定理即可求證結(jié)論.【詳解】(1)①如圖2,連接,并延長交于點(diǎn),圖2,,,,,,.②如圖3,連接,并延長交于點(diǎn)D,,,,,,,.(2),,平分,,又,是等邊三角形,,,,,,,,為的切線.【點(diǎn)睛】本題考查了切線的判定、圓周角定理、等腰三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、三角形外角的性質(zhì),熟練掌握相關(guān)判定及性質(zhì)是解題的關(guān)鍵.22.(1)40元(2)10元【解析】【分析】本題考查了一元二次方程的應(yīng)用,二次函數(shù)的最值,解題的關(guān)鍵是:(1)設(shè)每件售價(jià)應(yīng)定為元,則每件的銷售利潤為元,日銷售量為件,利用該種小商品的日銷售利潤每件的銷售利潤日銷售量,即可得出關(guān)于的一元二次方程,解之取其符合題意的值即可得出結(jié)論;(2)根據(jù)(1)列出的方程求解最大值即可.【小問1詳解】解:設(shè)每件降價(jià)元,則每件的銷售利潤為元,日銷售量為件,依題意得:整理得:,解得:(不合題意,舍去),.每件售價(jià)應(yīng)定為(元).答:每件售價(jià)應(yīng)定為40元.【小問2詳解】設(shè)日利潤元,每件降價(jià)元.當(dāng)時(shí),最大,此時(shí)(元)答:每件商品降價(jià)10元時(shí)日利潤最大.23.(1)(2)不能,理由見解析【解析】【分析】本題考查了待定系數(shù)法求二次函數(shù)的應(yīng)用、二次函數(shù)解析式以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A的坐標(biāo),利用待定系數(shù)法求出拋物線的解析式;(2)根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合水高求出可通過船的最高高度(寬度固定).(1)根據(jù)點(diǎn)A的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;(2)代入求出x值,再求出可通過船的最大寬度,將其與比較后即可得出結(jié)論.【小問1詳解】解:由題意可知,該拋物線頂點(diǎn)坐標(biāo)為設(shè)拋物線函數(shù)關(guān)系式為,把代入,得,,∴這個(gè)二次函數(shù)的表達(dá)式為;【小問2詳解】水位上升后船頂部距原來水面高:把代入得,,,∴此時(shí)對(duì)應(yīng)的橋孔寬度為.,∴暴雨后這艘船不能從這座拱橋下通過.24.(1)是等腰三角形,理由見解析(2)【解析】【分析】(1)圓周角定理,得到,同角的余角相等,得到,等弧所對(duì)的圓周角相等,得到,進(jìn)而得到,即可得出結(jié)論;(2)等角的余角相等,得到,進(jìn)而得到,進(jìn)而求出的長,勾股定理,求出的長,連接,設(shè)半徑,利用勾股定理求出的值即可.【小問1詳解】解:是等腰三角形.為直徑,,,,.,,,,,,是等腰三角形.【小問2詳解】中,,又,,,,,,,在Rt中,.連接,設(shè)半徑,則,在Rt中,,.的直徑.【點(diǎn)睛】本題考查圓周角定理,等腰三角形的判定和性質(zhì),勾股定理.熟練掌握直徑所對(duì)的圓周角為直角,以及等弧所對(duì)的圓周角相等,是解題的關(guān)鍵.25.(1)見解析(2)①;②見解析【解析】【分析】本題考查扇形的面積公式,尺規(guī)作圖--作角平分線,作垂線.(1)根據(jù)扇形的面積公式,得到半徑相同的兩個(gè)扇形的面積比等于圓心角的度數(shù)比,即可得到的角平分線,平分扇形的面積,作的角平分線,即可;(2)①根據(jù)扇形的面積公式,得到圓心角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論