版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版八年級數(shù)學上冊第十三章軸對稱定向測試考試時間:90分鐘;命題人:數(shù)學教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在中,,,,則的長度為(
)A. B. C. D.2、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°3、下列電視臺標志中是軸對稱圖形的是(
)A. B.C. D.4、三名同學分別站在一個三角形三個頂點的位置上,他們在玩搶凳子的游戲,要求在他們中間放一個凳子,搶到凳子者獲勝,為使游戲公平,凳子應放的最適當?shù)奈恢迷谌切蔚模?/p>
)A.三條角平分線的交點 B.三邊中線的交點C.三邊上高所在直線的交點 D.三邊的垂直平分線的交點5、將三角形紙片()按如圖所示的方式折疊,使點C落在邊上的點D,折痕為.已知,若以點B、D、F為頂點的三角形與相似,那么的長度是(
)A.2 B.或2 C. D.或26、下列圖案是幾家銀行的標志,其中是軸對稱圖形的有()A.1個 B.2個 C.3個 D.4個7、永州市教育部門高度重視校園安全教育,要求各級各類學校從認識安全警告標志入手開展安全教育.下列安全圖標不是軸對稱的是(
)A. B. C. D.8、如圖,將?ABCD沿對角線AC折疊,使點B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°9、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(
)A. B.C. D.10、下列三角形中,等腰三角形的個數(shù)是(
)
A.4個 B.3個 C.2個 D.1個第Ⅱ卷(非選擇題70分)二、填空題(5小題,每小題4分,共計20分)1、如圖,在銳角中,,,平分,、分別是、上的動點,則的最小值是______.2、將一副直角三角板如圖擺放,點C在EF上,AC經(jīng)過點D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF=_____.3、點(3,0)關于y軸對稱的點的坐標是_______4、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.5、如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=
___________°.三、解答題(5小題,每小題10分,共計50分)1、如圖,中,,,.(1)用直尺和圓規(guī)作的垂直平分線;(保留作圖痕跡,不要求寫作法)(2)若(1)中所作的垂直平分線交于點,求的長.2、如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.3、如圖,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.求證:BC=AB+CD.4、如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.(1)求證:;(2)若∠BAD=20°,求∠AEC的度數(shù).5、(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過點D作EF∥BC,分別交AB、AC于E、F兩點,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關系是__________,△AEF的周長是__________;(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為“若△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個等腰三角形;EF與BE、CF之間的數(shù)量關系是什么?證明你的結論,并求出△AEF的周長;(3)已知:如圖3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過點D作DE∥BC,分別交AB、AC于E、F兩點,則EF與BE、CF之間又有何數(shù)量關系呢?直接寫出結論不證明.-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質30°所對的直角邊等于斜邊的一半求解即可.【詳解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故選:C【考點】本題考查了含30度角的直角三角形的性質,掌握含30度角的直角三角形的性質是解題的關鍵.2、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質,垂直平分線的判定和性質,等腰三角形的性質,求出∠ECB是解本題的關鍵.3、A【解析】【分析】根據(jù)軸對稱圖形的定義進行判斷,即一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.【詳解】解:A選項中的圖形是軸對稱圖形,對稱軸有兩條,如圖所示;B、C、D選項中的圖形均不能沿某條直線折疊,直線兩旁的部分能夠互相重合,因此,它們都不是軸對稱圖形;故選:A.【考點】本題考查了軸對稱圖形的概念,其中正確理解軸對稱圖形的概念是解題關鍵.4、D【解析】【分析】根據(jù)題意可知,凳子的位置應該到三個頂點的距離相等,從而可確定答案.【詳解】因為三邊的垂直平分線的交點到三角形三個頂點的距離相等,這樣就能保證凳子到三名同學的距離相等,以保證游戲的公平,故選:D.【考點】本題主要考查垂直平分線的應用,掌握垂直平分線的性質是關鍵.5、B【解析】【分析】分兩種情況:若或若,再根據(jù)相似三角形的性質解題【詳解】∵沿折疊后點C和點D重合,∴,設,則,以點B、D、F為頂點的三角形與相似,分兩種情況:①若,則,即,解得;②若,則,即,解得.綜上,的長為或2,故選:B.【考點】本題考查相似三角形的性質,是重要考點,掌握相關知識是解題關鍵.6、C【解析】【分析】根據(jù)軸對稱圖形的概念“如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合的圖形”可直接進行排除選項.【詳解】解:都是軸對稱圖形,而不是軸對稱圖形,所以是軸對稱圖形的有3個;故選C.【考點】本題主要考查軸對稱圖形的識別,熟練掌握軸對稱圖形的概念是解題的關鍵.7、D【解析】【分析】根據(jù)軸對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,故本選項不合題意;B、是軸對稱圖形,故本選項不合題意;C、是軸對稱圖形,故本選項不合題意;D、不是軸對稱圖形,故本選項符合題意.故選:D.【考點】本題考查了軸對稱圖形的概念,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.8、C【解析】【分析】根據(jù)平行四邊形性質和折疊性質得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質,求出∠BAC的度數(shù)是解決問題的關鍵.9、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.10、B【解析】【分析】根據(jù)題圖所給信息,根據(jù)邊或角分析即可【詳解】解:第一個圖形中有兩邊相等,故第一個三角形是等腰三角形,第二個圖形中的三個角分別為50°,35°,95°,故第二個三角形不是等腰三角形;第三個圖形中的三個角分別為100°,40°,40°,故第三個三角形是等腰三角形;第四個圖形中的三個角分別為90°,45°,45°,故第四個三角形是等腰三角形;故答案為:B.【考點】本題考查了等腰三角形的判定,掌握等腰三角形的判定是解題的關鍵.二、填空題1、4【解析】【分析】過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據(jù)BC=8,∠ABC=30°,由直角三角形的性質即可求出CE的長.【詳解】解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,∵BD平分∠ABC,∴M′E=M′N′,∴M′N′+CM′=EM′+CM′=CE,則CE即為CM+MN的最小值,在Rt中,BC=8,∠ABC=30°,∴CM+MN的最小值是4.故答案為:4.【考點】本題考查的是軸對稱-最短路線問題,根據(jù)題意作出輔助線,構造出直角三角形,含有30°的直角三角形的性質求解是解答此題的關鍵.2、25°【解析】【分析】先根據(jù)等邊對等角算出∠ACB=∠B=45°,再根據(jù)直角三角形中兩個銳角互余算出∠F=60°,最后根據(jù)外角的性質求解即可.【詳解】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°.∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°.∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.【考點】本題考查了等腰三角形的性質,直角三角形的性質以及外角的性質,解題的關鍵是要合理的運用外角和計算的時候要細致認真.3、(-3,0)【解析】【分析】根據(jù)平面直角坐標系中兩個關于坐標軸成軸對稱的點的坐標特點,直接用假設法設出相關點即可.【詳解】解:點(m,n)關于y軸對稱點的坐標(-m,n),所以點(3,0)關于y軸對稱的點的坐標為(-3,0).故答案為:(-3,0).【考點】本題考查平面直角坐標系點的對稱性質:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).4、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質、三角形內角和定理以及含30度角的直角三角形,利用角平分線的性質及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.5、35【解析】【詳解】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分線DE交AC于點D,∴AD=BD,∴∠ABD=∠A=35°;故答案是35.三、解答題1、(1)詳見解析;(2).【解析】【分析】(1)分別以,為圓心,大于為半徑畫弧,兩弧交于點,,作直線即可.(2)設,在中,利用勾股定理構建方程即可解決問題.【詳解】(1)如圖直線即為所求.(2)∵垂直平分線段,∴,設,在中,∵,∴,解得,∴.【考點】本題考查作圖﹣基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、見解析【解析】【分析】(1)連接BE,根據(jù)線段垂直平分線的性質可得AE=BE,利用等邊對等角的性質可得∠ABE=∠A;結合三角形外角的性質可得∠BEC的度數(shù),再在Rt△BCE中結合含30°角的直角三角形的性質,即可證明第(1)問的結論;(2)根據(jù)直角三角形斜邊中線的性質可得BD=CD,再利用直角三角形銳角互余的性質可得到∠ABC=60°,至此不難判斷△BCD的形狀【詳解】(1)證明:連結BE,如圖.∵DE是AB的垂直平分線,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等邊三角形.理由如下:∵DE垂直平分AB,∴D為AB的中點.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等邊三角形.【考點】此題考查了線段垂直平分線的性質、30°角的直角三角形的性質,等腰三角形的性質,直角三角形斜邊的中線等于斜邊的一半,等邊三角形的判定,熟練掌握30°角的直角三角形的性質是解(1)的關鍵,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解(2)的關鍵,3、證明見解析【解析】【分析】在BC上截取點E,并使得BE=BA,連接DE,證明△ABD≌△EBD,得到∠DEB=∠BAD=108°,進一步計算出∠DEC=∠CDE=72°得到CD=CE即可證明.【詳解】證明:在線段BC上截取BE=BA,連接DE,如下圖所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:,∴△ABD≌△EBD(SAS),∴∠DEB=∠BAD=108°,∴∠DEC=180°-108°=72°,又AB=AC,∴∠C=∠ABC=(180°-108°)÷2=36°,∴∠CDE=180°-∠C-∠DEC=180°-36°-72°=72°,∴∠DEC=∠CDE,∴CD=CE,∴BC=BE+CE=AB+CD.【考點】本題考查了角平分線的定義,三角形內角和定理,全等三角形的判定與性質,等腰三角形性質等,本題的關鍵是能在BC上截取BE,并使得BE=BA,這是角平分線輔助線和全等三角形的應用的一種常見作法.4、(1)見解析;(2)100°.【解析】【分析】(1)根據(jù)△ADE與△ABC都是等邊三角形,得到AC=AB,AE=AD,∠DAE=∠BAC=60°,從而得到∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,利用SAS證得△ABD≌△ACE;(2)由△ABD≌△ACE,得到∠ACE=∠B=60°,∠BAD=∠CAE=20°,再由三角形內角和為180°即可求出∠AEC的度數(shù).【詳解】(1)證明:∵△ADE與△ABC都是等邊三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,在△CAE與△BAD中,,∴△ABD≌△ACE(SAS);(2)∵△ABD≌△ACE,∴∠ACE=∠B=60°,∠BAD=∠CAE=20°,∴∠AEC=180°-60°-20°=100°.【考點】此題考查全等三角形的判定與性質及等邊三角形的性質,根據(jù)等邊三角形中隱含的條件可以得到證明三角形全等的一些條件是解題關鍵.5、(1)5;BE+CF=EF;20;(2)2;BE+CF=EF,證明見解析;△AEF的周長=18;(3)BE-CF=EF,理由見解析.【解析】【詳解】試題分析:(1)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=∠BCD,再根據(jù)等角對等邊可得BE=DE,CF=DF,然后解答即可;(2)根據(jù)角平分線的定義可得∠EBD=∠CBD,∠FCD=∠BCD,再根據(jù)兩直線平行,內錯角相等可得∠EDB=∠CBD,∠FDC=∠BCD,然后求出∠EBD=∠EDB,∠FDC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度吊頂工程風險管理與保險合同3篇
- 二零二五年度智慧城市建設規(guī)劃與實施合同2篇
- 二零二五年巖土工程勘察分包執(zhí)行合同3篇
- 2025年度汽車維修配件銷售代理合同(汽車配件)
- 梯形鋼屋架課程設計61
- 海南政法職業(yè)學院《非編技術基礎》2023-2024學年第一學期期末試卷
- 觀影課程設計案例
- 海南衛(wèi)生健康職業(yè)學院《市政工程概預算》2023-2024學年第一學期期末試卷
- 二零二五年度汽車租賃與新能源車租賃服務合同
- 海南體育職業(yè)技術學院《影視音效設計與創(chuàng)作》2023-2024學年第一學期期末試卷
- 中華傳統(tǒng)文化之文學瑰寶學習通超星期末考試答案章節(jié)答案2024年
- 2023年外交學院招聘筆試備考試題及答案解析
- PPVT幼兒語言能力測試題附答案
- 致客戶通知函
- 中華人民共和國職業(yè)分類大典電子版
- 各種預混料配方設計技術
- 全國非煤礦山分布
- 12千伏環(huán)網(wǎng)柜(箱)標準化設計定制方案(2019版)
- 思想品德鑒定表(學生模板)
- 滿堂支架計算
- MA5680T開局配置
評論
0/150
提交評論