版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IntroductiontoLowCarbonGasTechnologies
Contents
OVERVIEWPage3
Part1:DECARBONISATIONPage6
BiomethaneproductionthroughanaerobicdigestionPage6
PyrogasificationPage8
HydrothermalgasificationPage9
E-methanePage10
SolarphotocatalyticprocessesPage11
Part2:DIVERSIFICATIONPage12
MethanereformationPage13
-MethanereformingprocessforpureH2productionPage13
WaterelectrolysisPage14
ThermalgasificationPage14
MethanepyrolysisPage15
SolarphotocatalyticprocessesPage15
BiologicalproductionPage16
GeologicalextractionPage17
Part3:INNOVATION
Page18
ACKNOWLEDGEMENTS
Page19
Frontcoverimage:iS/artisteer
02IntroductiontoLowCarbonGasTechnologies
Overview
Attheendof2023,morethan140countrieshadamid-century
carbon-neutralitypledge.Meetingthesecommitmentswillrequirea
dramaticandrapidchangeintheentireglobalenergysystem,onewhichtheflexibilityandinnovationofthegasindustryiswellplacedtodeliver.
Reducingemissionsinlinewiththe2015ParisAgreementonClimateChangewillrequire,asaminimum,therampingupofthreekeyareas:
1
Decarbonisation:improvingenergyefficiency,andreducingemissionsandmethaneleaks.
2
Diversification:usingnaturalgaswithlow-carbonandrenewablealternatives,suchasbiomethane,e-methaneandhydrogen.
3
Innovation:supportingtheindustry,bothfromalegislative,regulatoryandinvestmentperspectivetocontinuouslyinnovateitsproductsandservicesrenderedtomarkets,consumersandusers.
Organicgrowth:
Amodernbiofuelgasplant.
Photo:iS/VadymTerelyuk
IntroductiontoLowCarbonGasTechnologies03
Overview
AlignedtoIGU’ssupportoftheParisAgreement’sNationallyDeterminedContributionstoreduceGHG
emissionsanditscommitmenttosignificantlydecarbonisetheglobalenergysystem,this“IntroductiontoLowCarbonGasTechnologies”providesabriefguideonkeylow-carbonandrenewablegastechnologiesthatarecurrentlyavailablefordeploymenttorampupthegasindustry’seffortstowardsdeepdecarbonisation.
Naturalgasanditsevolvingtechnologiessupporttherenewableenergysupplybyovercomingintermittencyandinstability.Existingnaturalgasinfrastructurewillalsoenablecost-effectiveandmorerapiddeploymentoflow-carbonandrenewablegases-criticalfordeepdecarbonisationoftheglobaleconomy.Together,theycanenablenet-zeropathways,energysecurityandaccessissues.
Futureenergymix:
Therearearangeof
optionsonthehorizon.
Image:iS/sharfsinn
04IntroductiontoLowCarbonGasTechnologies
Overview
I.
Thefirstsectionofthereportwillreviewthemainfivelow-CO2gastechnologiesaimingtodecarbonisethemethanemoleculesupplychain.Theseare:
1
Anaerobicdigestion:biomethanebasedonwetbiomass.
2
Pyrogasification:syntheticmethaneobtainedfromthermo-chemicalprocesswastesrichincarbon.
3
4
Hydrothermalgasification:syntheticmethanebasedonliquidbiomasstreatmentathightemperatures.
5
E-methane:syntheticmethaneusingcarbondioxideasfeedstock.Solarphotocatalyticprocesses.
Thesecondsectionofthereportwillprovideanoverviewofhydrogenproduction
technologiesasenergycarriers.Currently,thereisalimitednumberofsuchtechnologiesinwidespreadoperation,andthesemustberampedupbyordersofmagnitudetobe
consistentwiththeworld’scurrentclimatetargets.Onlythencanweensurethattheprioritiesofenergysecurityandenergytransitiondonotundermineeachother.
Thecurrentenergy-carryinghydrogenproductiontechnologiesare:
Methanereformation:extractinghydrogenfrommethanemoleculesandremovingCO2.
Waterelectrolysis:usingrenewableelectricitytoproducehydrogenfromwater.
Thermalgasification:extractinghydrogenfromsolidmaterialwithhighheat.
Methanepyrolysis:extractinghydrogenfrommethaneusingaprocessthatdoesnotproduceCO2.
Solarphotocatalytic:usingdedicatedsolarenergyinstallationstoproducerenewablehydrogen.
Biologicalproductionofhydrogen:throughfermentationandphotolysisofbiomass.
Geologicalextractionofnaturalhydrogen.
2.
4
6
3
7
2
5
1
IntroductiontoLowCarbonGasTechnologies05
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONAEDUGAZ
bcu
I.Decarbonisation
1Biomethaneproductionthroughanaerobicdigestion
Feedstocksproduction,storageandphysicalpretreatment
Production
Digestate
valorisation
Biogas/Biomethanevalorisation
Anaerobicdigestion
Biogas
Combinedheat
andpowerplant
(CHP)
Digestate
Collect
feedstocks
Digestatestorage
Fertilizer
Storage
Biogasupgrading
Biofuel
Spreading
Naturalgasgridinjection
Agriculturalwastes
Other
biowastes
Electricity
Biomethane
Manure
Heat
Anaerobicdigestionisaprocessthroughwhichbacteriabreakdownorganicmatterintheabsenceofoxygen.
Thisprocessreleasesenergy-richbiogas,whichisrelativelyhighinmethane(CH4)contentandcanbe
capturedandusedasfuel.Itcanbeenhancedeitherbyinjectinghydrogen(H2)inthereactororbyusingalightelectricalcurrenttoimprovetheCH4/CO2-ratio.
Thereisawiderangeofpotentialorganicmatterinputsthatcanbeusedasfeedstock,suchasfoodandfeedindustrywastes,manureandslurry,greenwastes,intermediatecropsandsewagesludge.
06IntroductiontoLowCarbonGasTechnologies
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
Biomethaneisconsideredcarbon-neutral
Biomethaneproductioncapturesmethane,astrong
greenhousegas,fromitsbiorawmaterial,andturnsitinto
usefulfuel.Thisprocessstopsmethanefromescapingintotheatmosphere,whereitwouldcontributetoglobalwarming.
Biomethane,madefrombiogas,canbeusedjustlikenaturalgas.
Iteasilyusestheexistinggassystemswithoutneedinganychanges,makingitacost-effectiveandsimplewaytosupportdecarbonisation.
CO2fromtheatmosphereiscapturedbyorganicwasteusedtoproduce
biomethane.ItscombustionproducesbiogenicCO2emissions.
Compensationeffect:almostnoimpactongreenhousegasemissions.
0
CarbonNeutral
%
1.CollectionOrganicwasteiscollectedand
transportedtothemethanisationsite.
fermentation
processwhichproduces
digestateandbiogas.
Digestate
Isusedandanaturalfertiliser.
Biogas
Arenewablefuelto
generateheat(hotwaterandsteam)and
electricity(CHP)onsite.
Organicwaste
goesthroughananaerobic
2.Anaerobicdigestion
RGGO=1MWhgreengasinjected
4.EndusesBiogasispurifiedtobeinjectedinto3.Upgrade
thegasgridforindustrialanddomesticuses,suchasheatingandcooking.
Thesefeedstocksarecollectedandtransportedtothefacility(methanisationsite),wheretheyareturnedintobiogas.
Thebiogascanthenbedirectlyusedtoproduceelectricityandheat,oritcanbepurifiedintoBiomethane,whichisaone-for-onereplacementfornaturalgas.
Biomethanecanbeinjectedintotheexistinggasgridforindustrialanddomesticuses,suchasheatingorcooking,andformobilitypurposes.Itisimportanttorememberthattheefficiencyofbiomethaneproductionisheavilydependentonthesourcematerial.
IntroductiontoLowCarbonGasTechnologies07
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
2Pyrogasification
Pyrogasificationisathermochemicalprocessthatconsistsofheatingwasteintheabsenceofoxygentoproducearenewablemethane.Ithastwomainsources:
IDrybiomass:woodwaste,residuesfromwastemanagement,andmostorganicwaste.
IISolidrecoveredfuels(SRF)areproducedfromhouseholdrecyclingwasteandgeneralindustrialandcommercialwaste.
Oncecollected,thewasteisheatedtoveryhightemperatures(800to1,500degreesCelsius)inthepresenceofasmallamountofoxygen,convertingthewasteintosyntheticgas(syngas).Syngasisrichincarbonmonoxide,hydrogen,carbondioxideandmethaneandmustbepurified.
SyngasfromSRFcontainsmorepollutantsthansyngasfromcleanbiomass,suchasfromplants.Further
challengesarefoundinconventionalinorganicgasremovalprocesses,whichmustbeadaptedbeforebeinguseable.
Developmentisalsonecessarytopurifythesyngasaccordingtoitsfutureusage,includinginmakingammonia,methanolorotherindustrialchemicalsandfuels.
Pyro-gasificationprocess
Stepaimingtoincreasethecarbon
conversion
intomethane
Stepaiming
atconvertingbiomassintoasyntheticgas(<<syngas>>)richinCO,H2,CO2andCH4
Stepdesignedtoremove
undesirablecompoundssuchastarsorinorganicsulfur
StepdesignedtoadjustthebioSNGqualityaccordingto
itsusage
CO+3H2>>CH4+H2OCO2+4H2>>CH4+2H2O
Hightemperatureheatapplied
Renewable
carbon
feedstock
Catalytic
methanation
Syngas
purification
Gas
upgrading
Removingimpurities
BioSNG
Fieldwork:Biogasfromcorn.Photo:iS/Jan-Otto
08IntroductiontoLowCarbonGasTechnologies
Decarbonisation
3Hydrothermalgasification
Hydrothermalgasificationrequiresthepresenceofwatertoconvertwetorliquidorganicwasteintosyngas,throughaprocesswhichsubjectsthewastetohighpressureandtemperatures.
Theproducedsyngasisarenewablegas,composedofmethane,hydrogenandcarbondioxide.However,thecompositionofthissyngasvaries,accordingtothecharacteristicsoftheinputs.
Theprocesscreatesgreengasesusingliquidorganicwaste,whichisotherwisedifficulttodisposeof,suchasdigestatesfromanaerobicdigestion,sewagesludgefromindustrialormunicipalwastewatertreatmentplants,macroandmicro-algae,liquidandsolidfarmingwaste,foodindustryresiduesandby-products.
Thehydrothermalgasificationconsistsofthefollowing:
-Liquidorganicwasteispumpedathighpressure(260-300bars).
-Thematterthenpassesthroughaheatexchanger,whichseparatesphosphorus,potassium,calciumandmetalswhichareextractedandrecovered.
Hydrothermalgasificationisgasificationinhotcompressedwaterwhichuseswaterinasupercriticalstate
HydrothermalreactorSyngasabovethe
watersupercritical
point(221bar,374oC)
Non-catalytic600-700oC
S
Syngas
Separation
Catalytic380-420oC
CH4
Liquidorganicwaste
Productionofsyngas,CH4,H2,orchemicals
●Rawsyngascanbevalorisedeitherdirectlyforheatand/orelectricityproduction,orpurifiedtocleanCH4orH2,orconvertedintochemicals.
CH4contentreaches50-60%incatalyticconversion,andupto90%whenH2isco-injectedinthegasifier.H2concentrationcanachieve50-75%insyngas.
Source:2020.LeCadreE.MertensJ.EmergingSustainableTechnologies
P,K,Ca
metalsrecovery
Heat
exchanger
Waterand
NH4+
260-300bar
Purification
Pump
CO2
H2
Theprocessispossibleatbothhigherandlowertemperatures(aslongasacatalystisused).Therearepositivesandnegativesforboth,ashighertemperaturesrequiremoreenergy,andtheuseofapreciousmetalcatalystatlowertemperaturesiscostlyandhasafinitelifespan.
IntroductiontoLowCarbonGasTechnologies09
Decarbonisation
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
Theresultingsyngasisthenpurifiedtoextractunwantedcarbondioxide,leavingmethaneandhydrogen.Thisrawsyngashasthepotentialtobeuseddirectlyforheatandelectricityproduction.Alternatively,the
hydrogencanbeusedtoconvertsomeofthecarbondioxideintoadditionalmethanethroughamethanationstep,afterwhichtheresultinggascanbetreatedsoitisreadytoinjectintothegastransmissionsystem.
Methanecontentreaches50-60%incatalyticconversionandevenupto90%whenadditionalhydrogenisalsoinjectedintothegasifier.Theprocessproducesmethaneorhydrogenefficiently.
4E-methane
Methanationcanalsobeusedtocombinecarbonmonoxide(CO)orcarbondioxide(CO2)withhydrogentoproducee-methane,inaprocessthatalsoproducesheat.Methanationisaprocessthroughwhich
hydrogenisconvertedintomethane,whichcanbeusedintheexistingnaturalgasinfrastructure.
Carbondioxidecanbeobtainedfrommanysources,suchasmethanisationplants(biogenicCO2)orfrom
industrialproductionandcapturefromtheatmosphere,supportingthedevelopmentofawiderangeofnewtechnologiesthatmayhavethepotentialtoreducegreenhousegasemissions.
CO2canbeusedasbuildingblocksforhighadded-valuefuelslikemethane
SOURCEofCO2
Atmosphere
Cleaning
Capture(iflowconcentration)
OR
Industry
SOURCEofHYDROGEN
elabityle}Electrolyser
Plants
Algae,Cynobacteria,
CO2
CO2
Minerals
Bacteria
CO2
C2}2
+
CO2
VALORISATION
PHOTOSYNTHESISBiological
ENHANCEDOILRECOVERY
CARBONATIONFOODINDUSTRY
POLYMERISATIONChemical
MINERALISATIONChemical
FERMENTATIONBiological
HYDROGENATIONChemical
Co-Electrolysis
MARKETS
Decarbonisedrenewable
electricity
requiredforallprocessestobe
sustainable
Thiscouldbesyntheticnaturalgas(=syntheticmethane)
10IntroductiontoLowCarbonGasTechnologies
Decarbonisation
5Solarphotocatalyticprocesses
Artificialphotosynthesis(AP),alsoknownassolarphotocatalyticprocess,hasthepotentialtoproducesyntheticmethane.ThisprocessdecreasesorremovestheneedforusingelectricalpowerandGHG
emissions,aswellasbiomass,intheproductionoflow-CO2methane.
Artificialphotosynthesisseekstoreplicatethenaturalphotosynthesisprocess.Itwidelyusessemi-conductorsasthephotocatalyst,anditoftensplitstheprocessintotwosteps:
IProductionofhydrogenbysplittingwaterthroughthemethodofphotocatalysis.
IICarbondioxideproduction,anditssubsequentreactionswithhydrogen,toformlightweighthydrocarbons,byusingdifferentapproaches.
OxygenEvolution
Reaction(OER)
h
O2
Greenhydrogenmarket
CO2
H2O
bH2b
(photo)-electrocatalysis
HydrogenEvolution
Reaction(HER)
Greensyntheticmolecules
(CH4,CH3OH,COOH,CxHy,...)
Conversion:PhotovoltaicpowersupplysystemsPhoto:iS
IntroductiontoLowCarbonGasTechnologies11
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
2.Diversification
Hydrogenissettoplayagrowingroleintheenergysector,withseveralemergingtechnologiesaimingtoconvertvariousinputsintohydrogen,whichcanthenbeutilisedwithinthepowerandheatingindustries,andasfeedstockinthechemicalindustry.
Thegraphbelowillustrateshydrogenproductiontechnologiesandtheirpotentialenergysources:
Hydrogen
Inadditiontothesetechnologies,geologicalH2isemergingasapotentialsource.
Mostexistinghydrogenmarketsareveryspecific,consistingmainlyofindustrialuseandsupplyinginputsintoammoniaandmethanolproduction,actingalsoasareducingagentforthepetrochemical,chemical,steelandfoodindustries.
Presentusesofhydrogenasanenergycarrierremainlimited,andoftenexperimentalandpilot;however,
globalplanstoexpandthemaresignificant.Thereareseveraltechnologyadvancementprioritiestoaddressfortheseplanstomaterialise:
-Loweringcostsandgrowingtheircommercialtrackrecord.
-Storageandtransportationtechnologies,infrastructure,andstandards.
-Certificationdevelopment.
-End-userequipmentconversiontosupporthydrogenasfuel.
12IntroductiontoLowCarbonGasTechnologies
Diversification
INTERNATIONALGASUNION
UNIONNTERNATNALEDUGAZ
1Methanereformation
I
Methane(CH4)canbeutilisedtocreatepurehydrogenusingthefollowingprocessofsteammethanereformation:
II
Byusingheat,steamandmethanereacttogetherwithacatalysttoformcarbonmonoxideandhydrogen;thisisanenergy-intensiveprocess.
Inthewater-gasshiftreaction,carbonmonoxideiscombinedwithmoresteam,
producinghydrogenandcarbondioxide.Thecarbondioxidecanthenbecapturedthroughcarboncapturetechnologies,asitisinacontrolledenvironment.
Ifcarboncaptureandsequestrationarenotutilisedduringthisprocess,therewillbecarbonemissions
associatedwithit.However,whencarboncaptureandsequestrationareaddedtotheprocess,thehydrogenproducedisconsideredlowcarbon,alsocalled“bluehydrogen”.
MethanereformingprocessforpureH2production
Thisprocessconsistsoffourstages:
IPretreatmentunittopre-formfeedstockandtoeliminatesulphurcompounds.
IIReformingsteptoproducesyngasusingeithersteammethanereforming,partial
oxidisationorautothermalreforming.Itispossibletocombinethesetechnologies.IIIShiftreactor(s)toconvertsyngasand(increaseH2contentanddecreaseCO).
IVThepurificationunitseparatesthehydrogenfromtheproductstream.CO2canbecapturedthroughcarboncapturetechnologies.
1
Pretreatment
2
SteamMethaneReforming
Partial
Oxidation
AutothermalReforming
Steam
Heat
3
Water-GasShiftConversion
4
CO2
NaturalGas,HeavyOil,Naphtha,LPG
O2
Steam
O2
CO2
Purification
Hydrogen
Catalysts:
-TherelativecatalyticactivityofmetalsintheSMRreaction:Ru>Rh>Ir>Ni>Pt>Pd
PartialOxidation
CH4+1/2O2>>CO+2H2H=36kJ/mol
-Conventionaliron-chromiumforhightemperatureWGSandcopperalloysforlowtemperatureWGS
AutothermalReforming
CH4+H2O>>CO+3H2CH4+1/2O2>>CO+2H2
Water-GasShift
CO+H2O>>H2+CO2H=41kJ/mol
SteamMethaneReforming
CH4+H2O>>CO+3H2H=206kJ/mol
IntroductiontoLowCarbonGasTechnologies13
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
2Waterelectrolysis
Waterelectrolysisisawayofproducinghydrogenthatuseselectricitytosplitwaterintohydrogenand
oxygen.Whentheelectricityusedintheprocessisrenewableornuclear,therearenoGHGemissionsproducedintheprocess,andthiscanbereferredtoasrenewable,“green”and“pink”hydrogen,respectively.
Anelectricalcircuitiscreatedbycombininganelectrolyteandtwoelectrodestoformanelectrolyticcell.Thesechargedelectrodesthensplitthewater,withtheresultingnegativelychargedelectrodeattractingthepositivelychargedhydrogenionsand,conversely,thepositiveelectrodeattractingthenegativelychargedoxygenions
formingseparatebubblesofoxygenorhydrogenthatcanthenbecollected.
Therearefivemaintechnologiesusedtoperformwaterelectrolysis,whichdifferintermsofthematerialsusedfortheelectrodesandplates:
I
II
III
Alkalineelectrolysis
PEM(Protonexchangemembrane)electrolysis
SOEC(Solidoxideelectrolysis)
IVPCEC(Photoelectrochemical)
VAEM(Anionexchangemembrane)
Eachofthesefivetechnologieshasbenefitsanddrawbacks,rangingfromcost,efficiency,anddurability.
Thisiswhyfurtherresearchtoimproveperformanceandviabilityofwaterelectrolysisiscurrentlyongoing.
3Thermalgasification
Thermalgasificationisaprocessthatuses
solidorganicmatter(suchascoal,biomass-basedfeedstocks,SRFsandfractionsofnon-recyclableplastics)andconvertsthemintosyngasusing
hightemperatures(rangingfrom700-1500°C).Thereactionoccursunderstoichiometric
conditions(meaningallreactantsarecontrolledandfullyused),turningsolidresiduesinto
syngas.
Thesyngasisthenpurifiedtoremoveorganic
pollutants(suchaslightandheavytars)and
inorganicpollutants(suchashydrogensulphide,ammonia,andhydrochloricacid).Thisisthen
followedbythegas-watershiftreaction,which
meansthatthecarbonmonoxideproducedcan
beconvertedintoadditionalhydrogenandcarbondioxide.
Thegasesproducedarecollected,andhydrogenisextractedfromtheothergasesproduced(mainlycarbondioxide,carbonmonoxideandmethane)togivethehydrogenapurityofover99.9%.
14IntroductiontoLowCarbonGasTechnologies
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
4Methanepyrolysis
Methanepyrolysisusesmethaneasfeedstockand,byapplyingenergytobreakthechemicalbondbetweencarbonandhydrogen,itproduceshydrogengasandasolidcarbonproduct.
Theprocessrequireslessenergythanelectrolysis,anditsGHGfootprintislowduetotheabsenceofemissions.
Usingnaturalgasasfeedstockalsoprovidesthebenefitofaccesstotheexistinginfrastructure.Therearedifferentwaysofgeneratingtheheatformethanepyrolysis:
IPlasmapyrolysis:electriccurrentsareusedtocreateahotplasmawhichbreaksdownthemethaneintohydrogenandcarbon.
IIThermalpyrolysis:hotbathsofmoltensaltsormetalsareusedtobreakdownthemethaneintohydrogenandcarbon.
IIICatalyticpyrolysis:methaneispassedthroughafluidisedbedcontainingacatalystwhichbreaksdownthemethanewithincreasedefficiency.
IVMicrowaveassistedpyrolysis:microwavesareusedwithacatalysttobreakthemethanemoleculeintohydrogenandcarbon.
5Solarphotocatalyticprocesses
SolarphotocatalyticprocessesavoidanyGHGemissionsastheyrelyexclusivelyonsolarpower:
aphotocatalyticinstallationwhichcouldbefurtherenhancedbytheadditionofsolarPVpanels.Inthis
process,aphoto-absorber(typicallyasemi-conductor)absorbslight,leadingtotheseparationofpositiveandnegativecharges.Thereductioncreateshydrogen,andoxidationproducesoxygen,hydrogen,and
e-charges,makingthemavailableforredoxreactions(transferofelectrons)toproducehydrogenfromwater.Thisbasicconceptisutilisedinseveraltechnologies:
I
Photocatalysed(PC)watersplitting:thissystemisthesimplestoneand
consists,typically,ofaphotocatalystimmersedinasolution,atthesurfaceof
whichthereactionstakeplace.Oxygenandhydrogenmustbefurtherseparated.
II
Photo-ElectroChemical(PEC)watersplitting:thissystemisbasedontheprincipleofelectrolysiswheretheanodeand/orcathodeareimplementedwithphotocatalysts.Thedifference,comparedtophotocatalysedwater
splitting,isthatthissystemiselectro-assisted,allowingthecurrenttobeincreasedforhigheryields.
III
Photo-ElectroChemical(PV-EC)watersplitting:thislastsystemisoftenassociatedwithPCandPECprocessesandconsistsofanelectrolyser
equippedwithanintegratedhighlyefficientmultijunctionIII-VPVcell.
IntroductiontoLowCarbonGasTechnologies15
Diversification
INTERNATIONALGASUNION
UNIONNTERNATIONALEDUGAZ
bcu
6Biologicalproduction
Therearetwomainbiologicalprocessesthatcanbeusedtoproducehydrogen:fermentationandbiophotolysis.
Thefermentationprocessharnessesmacro-nutrients(longmolecules)frombiomass,whicharebrokendown
intohydrogen,andshortmoleculessuchasalcohols,simplesugars,andvolatilefattyacids.Variousfermentationtechnologiesarelistedbelow,anditshouldbenotedthatphotofermentationandMECmustbecoupledwith
thefirststepofdarkfermentationinatwo-stepprocess.
IDarkfermentation(fermentationwithoutlight),wherethesubstrateusedisacomplexorganicmatter.Large-scalebacteriacanperformdarkfermentation.
IIPhoto-fermentation(fermentationassistedbylight),wherethesubstrateusedissmallorganicacids.
IIIMECfermentation(assistedbyalowelectricalcurrent),wherethesubstrateusedisasimplecarbonsourcesuchasC2toC6(volatilefattyacids,singlesugarandalcohols).
WhileBiophotolysisproduceshydrogenfromlightandwater,cyanobacteriaandgreenalgaecansplitwaterintohydrogenandoxygenusingtheirhydrogenaseornitrogenaseenzymesystem.
Macro-nutrientsfrombiomass
Carbohydrates,
proteins,
lipids
Image:iS
(alcohols,simple
sugars,volatile
fattyacids)
Bacteria
H2+shortmolecules
16IntroductiontoLowCarbonGasTechnologies
Diversification
7Geologicalextraction
TherearetwomainwaysofproducingH2throughgeologicalextraction:
Naturalhydrogenproduction(“white”hydrogen)
H2ismainlyproducedthroughnaturalwater-rockreactions,suchasserpentinisation,wherewater
reactswithiron-richmineralswithintheEarth’s
crust.Thishydrogenper
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度面包磚生產(chǎn)線技術改造升級合同4篇
- 二零二五年度屋頂花園人工草皮養(yǎng)護合同3篇
- 2025個人股權轉讓與環(huán)保責任承擔協(xié)議:綠色企業(yè)股權合作合同4篇
- 二零二五年度企業(yè)應收賬款保理服務合同
- 二零二五年度城市道路橋梁改造工程承包合同4篇
- 二零二五年度農(nóng)業(yè)投資項目融資合同范本
- 課題申報參考:南越王墓出土鳳圖像研究
- 課題申報參考:梅蘭芳戲曲教育思想研究
- 二零二五年度民政協(xié)議離婚案件調解與法院速裁離婚案件審理合同
- 二零二五版煤炭電商平臺合作開發(fā)合同4篇
- 心肺復蘇課件2024
- 《城鎮(zhèn)燃氣領域重大隱患判定指導手冊》專題培訓
- 湖南財政經(jīng)濟學院專升本管理學真題
- 2024年湖南商務職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 2024-2025學年福建省廈門市第一中學高一(上)適應性訓練物理試卷(10月)(含答案)
- 2024年全國各地中考試題分類匯編:作文題目
- 彈性力學數(shù)值方法:解析法:彈性力學中的變分原理
- 《零售學第二版教學》課件
- 廣東省珠海市香洲區(qū)2023-2024學年四年級下學期期末數(shù)學試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
評論
0/150
提交評論