版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省常德市石門縣二中2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在平面α上,其法向量,則下列點不在平面α上的是()A. B.C. D.2.設(shè),則A.2 B.3C.4 D.53.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.4.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.5.已知等比數(shù)列的各項均為正數(shù),且,則()A. B.C. D.6.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進行“學(xué)習強國”的問卷調(diào)查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號7.設(shè)為實數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓8.若直線a不平行于平面,則下列結(jié)論正確的是()A.內(nèi)的所有直線均與直線a異面 B.直線a與平面有公共點C.內(nèi)不存在與a平行的直線 D.內(nèi)的直線均與a相交9.已知三個頂點都在拋物線上,且為拋物線的焦點,若,則()A.6 B.8C.10 D.1210.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.11.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為()A. B.C. D.12.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.14.設(shè)實數(shù)、滿足約束條件,則的最小值為___________.15.已知圓:和圓:,動圓M同時與圓及圓外切,則動圓的圓心M的軌跡方程為______.16.如圖所示,二面角為,是棱上的兩點,分別在半平面內(nèi),且,,,,,則的長______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線E:過點Q(1,2),F(xiàn)為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.18.(12分)在四棱錐中,底面是邊長為2的菱形,平面,,是的中點.(1)若為線段的中點,證明:平面;(2)線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求的長,若不存在,請說明理由.19.(12分)在△中,內(nèi)角所對的邊分別為,已知(1)求角的大??;(2)若的面積,求的值20.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點圖觀察散點圖,兩個變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.001),并用其估計產(chǎn)量為10千件時每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標準差s作為的估計值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時需尋找出現(xiàn)異樣成本的原因.利用估計值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:,,相關(guān)系數(shù).21.(12分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值22.(10分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D2、B【解析】利用復(fù)數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復(fù)數(shù)的四則運算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題3、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D4、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A5、B【解析】利用對數(shù)的運算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項均為正數(shù)的等比數(shù)列,,,,.故選:B6、B【解析】根據(jù)系統(tǒng)抽樣分成20個小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B7、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據(jù)拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.8、B【解析】根據(jù)題意可得直線a與平面相交或在平面內(nèi),結(jié)合線面的位置關(guān)系依次判斷選項即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內(nèi).A:內(nèi)的所有直線均與直線a異面錯誤,也可能相交,故A錯誤;B:直線a與平面相交或直線a在平面內(nèi)都有公共點,故B正確;C:平面內(nèi)不存在與a平行的直線,錯誤,當直線a在平面內(nèi)就存在與a平行的直線,故C錯誤;D:平面內(nèi)的直線均與a相交,錯誤,也可能異面,故D錯誤.故選:B9、D【解析】設(shè),,,由向量關(guān)系化為坐標關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點,準線方程為,設(shè),,由得則,化簡得所以故選:D10、C【解析】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【詳解】設(shè)與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.11、D【解析】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,求出點M的軌跡方程即可計算得解.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設(shè)點,則,化簡并整理得:,于是得點M的軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故選:D12、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:14、2【解析】畫出不等式組對應(yīng)的可行域,平移動直線后可得目標函數(shù)的最小值.【詳解】不等式組對應(yīng)的可行域如圖所示:將初始直線平移至點時,可取最小值,由可得,故,故答案為:2.15、【解析】根據(jù)動圓同時與圓及圓外切,即可得到幾何關(guān)系,再結(jié)合雙曲線的定義可得動點的軌跡方程.【詳解】由題,設(shè)動圓的半徑為,圓的半徑為,圓的半徑為,當動圓與圓,圓外切時,,,所以,因為圓心,,即,又根據(jù)雙曲線的定義,得動點的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:16、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點,分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點睛】本題主要考查空間向量的運算法則以及數(shù)量積的運算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,的最小值為.【解析】(1)將點的坐標代入拋物線方程,由此求得的值,進而求得拋物線的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達定理,設(shè)出直線的方程,聯(lián)立直線的方程求得的坐標,由此判斷出動點在定直線上.求得的表達式,利用基本不等式求得其最小值.【詳解】(1)將點坐標代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設(shè)直線的方程為,設(shè),由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結(jié)合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當且僅當時取等號.所以的最小值為.【點睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中三角形面積的有關(guān)計算,屬于中檔題.18、(1)證明見解析;(2)存在點,且的長為,理由見解析.【解析】(1)取的中點為,連接,得到,結(jié)合面面平行的判定定理證得平面平面,進而得到平面;(2)以為原點,所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標系,設(shè),求得的法向量為和向量,結(jié)合向量的夾角公式列出方程,求得的值,即可求解.【小問1詳解】證明:取的中點為,連接,因為分別為的中點,所以,又因為平面,且,所以平面平面,又由平面,所以平面.【小問2詳解】解:以為原點,所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標系,如圖所示,因為底面是邊長為2的菱形,設(shè),在直角中,可得,在直角中,可得,在中,因為,所以,即,解得,設(shè),可得,則,設(shè)平面的法向量為,則,令,可得,設(shè)直線與平面所成角為,所以,解得,即,所以存在點,且的長為.19、(1);(2)【解析】(1)由正弦定理,將條件中的邊化成角,可得,進而可得的值;(2)由三角形面積公式可得,再由余弦定理可得,得最后結(jié)論試題解析:(1),又∴又得(2)由,∴又得,∴得考點:正弦定理;余弦定理【易錯點睛】解三角形問題的兩重性:①作為三角形問題,它必須要用到三角形的內(nèi)角和定理,正弦、余弦定理及其有關(guān)三角形的性質(zhì),及時進行邊角轉(zhuǎn)化,有利于發(fā)現(xiàn)解題的思路;②它畢竟是三角變換,只是角的范圍受到了限制,因此常見的三角變換方法和原則都是適用的,注意“三統(tǒng)一”(即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”)是使問題獲得解決的突破口20、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關(guān)系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標準差s,從而可得非原料成本y服從正態(tài)分布,再計算,然后各個數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因為,所以,所以,所以,所以y關(guān)于x的回歸方程為【小問2詳解】與的相關(guān)系數(shù)為因為,所以用反比例函數(shù)模型擬合效果更好,把代入回歸方程得(元),所以產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元【小問3詳解】因為,所以,因為樣本標準差為,所以,所以非原料成本y服從正態(tài)分布,所以因為在之外,所以需要此非原料成本數(shù)據(jù)尋找出現(xiàn)異樣成本的原因21、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育學(xué)題庫檢測試卷B卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)綜合檢測試卷B卷含答案
- 運用邏輯思維
- 2024專業(yè)采購協(xié)議模板
- 2024新水電安裝合作協(xié)議樣本
- 2024年鋼筋工程承包協(xié)議范本
- 2024年勞動協(xié)議固定期限本參考
- 2024年中央空調(diào)系統(tǒng)工程協(xié)議
- 2024年汽車信貸保證協(xié)議模板定制
- 2024年食品級冷藏車運送協(xié)議樣本
- 【類文閱讀】25.古人談讀書(試題)五年級語文上冊 部編版(含答案、解析)
- 新疆維吾爾自治區(qū)吐魯番市2023-2024學(xué)年九年級上學(xué)期期中數(shù)學(xué)試題
- 小學(xué)信息技術(shù)《認識“畫圖”》說課稿
- 魯教版七年級上冊地理知識點匯總
- 新課標-人教版數(shù)學(xué)六年級上冊第四單元《比》單元教材解讀
- 全國高中青年數(shù)學(xué)教師優(yōu)質(zhì)課大賽一等獎《函數(shù)的單調(diào)性》課件
- 部編版道德與法治 四年級上冊 單元作業(yè)設(shè)計《為父母分擔》
- 核酸的生物合成 完整版
- 第一章-教育及其本質(zhì)
- 天然氣巡檢記錄表
- 食品進貨臺賬制度范本(3篇)
評論
0/150
提交評論