2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析_第1頁(yè)
2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析_第2頁(yè)
2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析_第3頁(yè)
2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析_第4頁(yè)
2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆四川省廣元市高二上數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.2.已知A,B,C,D是同一球面上的四個(gè)點(diǎn),其中是正三角形,平面,,則該球的表面積為()A. B.C. D.3.已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A.(-∞,0) B.C.(0,1) D.(0,+∞)4.“若”為真命題,那么p是(

)A. B.C. D.5.棱長(zhǎng)為1的正四面體的表面積是()A. B.C. D.6.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.107.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,1,2),B(-3,1,-2),則線段AB的中點(diǎn)坐標(biāo)是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)8.已知,則點(diǎn)到平面的距離為()A. B.C. D.9.已知一個(gè)乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來(lái)高度的倍,則當(dāng)它第8次著地時(shí),經(jīng)過(guò)的總路程是()A. B.C. D.10.已知拋物線過(guò)點(diǎn),點(diǎn)為平面直角坐標(biāo)系平面內(nèi)一點(diǎn),若線段的垂直平分線過(guò)拋物線的焦點(diǎn),則點(diǎn)與原點(diǎn)間的距離的最小值為()A. B.C. D.11.設(shè),,,則,,大小關(guān)系是A. B.C. D.12.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是上的奇函數(shù),,對(duì),成立,則的解集為_(kāi)________14.雙曲線的漸近線方程為_(kāi)__________.15.設(shè),分別是橢圓C:左、右焦點(diǎn),點(diǎn)M為橢圓C上一點(diǎn)且在第一象限,若為等腰三角形,則M的坐標(biāo)為_(kāi)__________16.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點(diǎn),,,求二面角的余弦值18.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長(zhǎng)為3的正方形,是中點(diǎn),求直線與平面所成角的正弦值.19.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個(gè)拱形橋架緊密相連,每個(gè)橋架的內(nèi)部有一個(gè)水平橫梁和八個(gè)與橫梁垂直的立柱,氣勢(shì)宏偉,素有“天下黃河第一橋”之稱.如圖②,一個(gè)拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標(biāo)系,已知,,,,立柱.(1)求立柱及橫梁的長(zhǎng);(2)求拋物線的方程和橋梁的拱高.20.(12分)甲、乙兩人參加普法知識(shí)競(jìng)賽,共有5題,選擇題(1)甲、乙兩人中有一個(gè)抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題21.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,數(shù)列的前項(xiàng)和為,求不等式的解集.22.(10分)已知數(shù)列的前項(xiàng)和為,且,,數(shù)列是公差不為0的等差數(shù)列,滿足,且,,成等比數(shù)列.(1)求數(shù)列和通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因?yàn)殡p曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.2、C【解析】由題意畫(huà)出幾何體的圖形,把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C3、B【解析】函數(shù)f(x)=x(lnx﹣ax),則f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),等價(jià)于f′(x)=lnx﹣2ax+1有兩個(gè)零點(diǎn),等價(jià)于函數(shù)y=lnx與y=2ax﹣1的圖象有兩個(gè)交點(diǎn),在同一個(gè)坐標(biāo)系中作出它們的圖象(如圖)當(dāng)a=時(shí),直線y=2ax﹣1與y=lnx的圖象相切,由圖可知,當(dāng)0<a<時(shí),y=lnx與y=2ax﹣1的圖象有兩個(gè)交點(diǎn)則實(shí)數(shù)a的取值范圍是(0,)故選B4、A【解析】求不等式的解集,根據(jù)解集判斷p.【詳解】由解得-2<x<4,所以p是.故選:A.5、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長(zhǎng),結(jié)合正四面體的概念,計(jì)算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個(gè)面均是全等的等邊三角形,由其棱長(zhǎng)為1,所以,所以可知:正四面體的表面積為,故選:D6、A【解析】計(jì)算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.7、B【解析】利用中點(diǎn)坐標(biāo)公式直接求解【詳解】在空間直角坐標(biāo)系中,點(diǎn),1,,,1,,則線段的中點(diǎn)坐標(biāo)是,,,1,故選:B.8、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A9、C【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】從第1次著地到第2次著地經(jīng)過(guò)的路程為,第2次著地到第3次著地經(jīng)過(guò)的路程為,組成以為首項(xiàng),公比為的等比數(shù)列,所以第1次著地到第8次著地經(jīng)過(guò)的路程為,所以經(jīng)過(guò)的總路程是.故答案為:C.10、B【解析】將點(diǎn)的坐標(biāo)代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標(biāo),分析可知點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為的圓,利用圓的幾何性質(zhì)可求得點(diǎn)與原點(diǎn)間的距離的最小值.【詳解】將點(diǎn)的坐標(biāo)代入拋物線的方程得,可得,故拋物線的方程為,易知點(diǎn),由中垂線的性質(zhì)可得,則點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為的圓,故點(diǎn)的軌跡方程為,如下圖所示:由圖可知,當(dāng)點(diǎn)、、三點(diǎn)共線且在線段上時(shí),取最小值,且.故選:B.11、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題12、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項(xiàng)公式可得解得故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點(diǎn),最后分類討論即可.【詳解】設(shè),則對(duì),,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;若,則;若,則或,解得或或;則的解集為.故答案為:.14、【解析】將雙曲線化為標(biāo)準(zhǔn)方程后求解【詳解】,化簡(jiǎn)得,其漸近線方程故答案為:15、【解析】先計(jì)算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因?yàn)镸在橢圓上,.因?yàn)镸在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過(guò)M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因?yàn)镸為橢圓C:上一點(diǎn)且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:16、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進(jìn)一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由題得,解得.進(jìn)而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設(shè)BC中點(diǎn)為,連接,,又面面,且面面,所以面.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系.由(1)知PB⊥平面PCD,故PB⊥,設(shè),可得所以由題得,解得.所以設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點(diǎn)睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.18、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問(wèn)2詳解】∵平面平面,交AD于點(diǎn)F,平面,平面平面,∴平面,以為原點(diǎn),,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線與平面所成角的正弦值為.19、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標(biāo),代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問(wèn)1詳解】由題意,知,因?yàn)锳BFM是等腰梯形,由對(duì)稱性知:,所以,【小問(wèn)2詳解】由(1)知,所以點(diǎn)M的橫坐標(biāo)為-18,則N的橫坐標(biāo)為-(18-5)=-13.設(shè)點(diǎn)M,N的縱坐標(biāo)分別為y1,y2,由圖形,知設(shè)拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當(dāng)x=-18時(shí),所以橋梁的拱高OH=3.24+4=7.24m.20、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對(duì)立事件概率計(jì)算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個(gè)選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點(diǎn)睛】本小題主要考查互斥事件概率計(jì)算,考查對(duì)立事件,屬于基礎(chǔ)題.21、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論