石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題含解析_第1頁
石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題含解析_第2頁
石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題含解析_第3頁
石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題含解析_第4頁
石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

石嘴山市重點中學2025屆高二上數(shù)學期末教學質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人2.如圖,、分別是橢圓的左頂點和上頂點,從橢圓上一點向軸作垂線,垂足為右焦點,且,點到右準線的距離為,則橢圓方程為()A. B.C. D.3.已知橢圓方程為:,則其離心率為()A. B.C. D.4.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.5.化學中,將構成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復排列構成的固體物質稱為晶體.在結構化學中,可將晶體結構截分為一個個包含等同內容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.6.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或7.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.8.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.9.已知關于x的不等式的解集為空集,則的最小值為()A. B.2C. D.410.若函數(shù)既有極大值又有極小值,則實數(shù)a的取值范圍是()A. B.C. D.11.若某群體中成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.12.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若恒成立,則______.14.已知橢圓的離心率為.(1)證明:;(2)若點在橢圓的內部,過點的直線交橢圓于、兩點,為線段的中點,且.①求直線的方程;②求橢圓的標準方程.15.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設置多個核酸檢測點對全市人員進行核酸檢測.已知組建一個小型核酸檢測點需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.16.在△ABC中,角A,B,C所對的邊分別為a,b,c,設△ABC的面積為S,其中,,則S的最大值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:集合為空集,命題q:不等式恒成立(1)若p為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍18.(12分)已知拋物線上一點到拋物線焦點的距離為,點關于坐標原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設直線與軸交點分別為,求的值;(3)若,求.19.(12分)設函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+20.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.21.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.22.(10分)已知兩個定點,,動點滿足,設動點的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點,且(為坐標原點),求直線的斜率;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,設每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B2、A【解析】設橢圓方程為,設該橢圓的焦距為,則,求出點的坐標,根據(jù)可得出,可得出,,結合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設橢圓方程為,設該橢圓的焦距為,則,由圖可知,點第一象限,將代入橢圓方程得,得,所以,點,易知點、,,,因為,則,得,可得,則,點到右準線的距離為為,則,,因此,橢圓的方程為.故選:A.3、B【解析】根據(jù)橢圓的標準方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B4、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D5、C【解析】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.6、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.7、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A8、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程9、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關鍵在于由一元二次不等式的解集的情況得出的關系,再將所求的式子運用不等式的性質降低元的個數(shù),運用均值不等式,是中檔題.10、B【解析】函數(shù)既有極大值又有極小值轉化為導函數(shù)在定義域上有兩個不同的零點.【詳解】因為既有極大值又有極小值,且,所以有兩個不等的正實數(shù)解,所以,且,解得,且.故選:B.11、A【解析】利用對立事件的概率公式可求得所求事件的概率.【詳解】由對立事件概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.12、B【解析】根據(jù)基本不等式進行求解即可.【詳解】因為正數(shù)x,y,所以,當且僅當時取等號,即時,取等號,而,所以解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】利用導數(shù)研究的最小值為,再構造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當時,遞減;當時,遞增;所以,即在上恒成立,令,則,當時,遞增;當時,遞減;所以,綜上,.故答案為:114、(1)證明見解析;(2)①;②.【解析】(1)由可證得結論成立;(2)①設點、,利用點差法可求得直線的斜率,利用點斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由可得出,利用平面向量數(shù)量積的坐標運算可得出關于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當在橢圓的內部時,,可得.設點、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.15、①.4②.2【解析】根據(jù)題意建立不等式組,進而作出可行域,最后通過數(shù)形結合求得答案.【詳解】設需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當直線過點A時,z取得最大值,由得恰為整數(shù)點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.16、【解析】應用余弦定理有,再由三角形內角性質及同角三角函數(shù)平方關系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當且僅當時等號成立,又,當且僅當時等號成立.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)判別式小于0可得;(2)根據(jù)復合命題的真假可知,p和q有且只有一個真命題,然后根據(jù)相應范圍通過集合運算可得.【小問1詳解】因為集合為空集,所以無實數(shù)根,即,解得,所以p為真命題時,實數(shù)a取值范圍為.【小問2詳解】由解得:,即命題q為真時,實數(shù)a的取值范圍為,易知p為假時,a的取值范圍為,q為假時,a的取值范圍為.因為為真命題,為假命題,則p和q有且只有一個真命題,當p為假q為真時,實數(shù)a的取值范圍為;當p為真q為假時,實數(shù)a的取值范圍為.綜上,實數(shù)a的取值范圍為18、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標,結合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設,則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設,,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負),即,所以【點睛】關鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關鍵.19、(1)(2)證明見解析【解析】(1)求出,討論其導數(shù)后可得原函數(shù)的單調性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉化為任意恒成立,后者可利用導數(shù)證明.【小問1詳解】,當時,;當時,,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因為,故當時,,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設,則,而在為增函數(shù),,故存在,使得,且時,,時,,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點睛】思路點睛:不等式的恒成立,可結合不等式的形式將其轉化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導數(shù)、放縮法等)進行處理.20、(1);(2).【解析】(1)根據(jù)導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】設曲線的切點坐標為,由,所以過該切點的切線的斜率為,因此該切線方程為:,因為直線與函數(shù)的圖象相切,所以,因為直線與函數(shù)的圖象相切,且函數(shù)過原點,所以曲線的切點為,于是有,即;【小問2詳解】由可得:,當時,顯然不成立,當時,由,設函數(shù),,,當時,,單調遞減,當時,,單調遞減,當時,,單調遞增,因此當時,函數(shù)有最小值,最小值為,而,當時,,函數(shù)圖象如下圖所示:方程有兩個不同的實數(shù)解,轉化為函數(shù)和函數(shù)的圖象,在當時,有兩個不同的交點,由圖象可知:,故a的取值范圍為.【點睛】關鍵點睛:利用常變量分離法,結合轉化法進行求解是解題的關鍵.21、(1)(2)不存在,理由見解析【解析】(1)利用垂直關系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論