版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
石嘴山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學(xué)典籍《四元玉鑒》中有如下一段話:“河有汛,預(yù)差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人2.如圖,、分別是橢圓的左頂點(diǎn)和上頂點(diǎn),從橢圓上一點(diǎn)向軸作垂線,垂足為右焦點(diǎn),且,點(diǎn)到右準(zhǔn)線的距離為,則橢圓方程為()A. B.C. D.3.已知橢圓方程為:,則其離心率為()A. B.C. D.4.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.5.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個個包含等同內(nèi)容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點(diǎn)位置,O原子位于棱的中點(diǎn)).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.6.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或7.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.8.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.9.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.410.若函數(shù)既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是()A. B.C. D.11.若某群體中成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.12.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若恒成立,則______.14.已知橢圓的離心率為.(1)證明:;(2)若點(diǎn)在橢圓的內(nèi)部,過點(diǎn)的直線交橢圓于、兩點(diǎn),為線段的中點(diǎn),且.①求直線的方程;②求橢圓的標(biāo)準(zhǔn)方程.15.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設(shè)置多個核酸檢測點(diǎn)對全市人員進(jìn)行核酸檢測.已知組建一個小型核酸檢測點(diǎn)需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點(diǎn)需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點(diǎn)和________個大型核酸檢測點(diǎn),才能更高效的完成本次核酸檢測工作.16.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)△ABC的面積為S,其中,,則S的最大值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:集合為空集,命題q:不等式恒成立(1)若p為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍18.(12分)已知拋物線上一點(diǎn)到拋物線焦點(diǎn)的距離為,點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,過點(diǎn)作軸的垂線,為垂足,直線與拋物線交于兩點(diǎn).(1)求拋物線的方程;(2)設(shè)直線與軸交點(diǎn)分別為,求的值;(3)若,求.19.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+20.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實(shí)數(shù)解,求a的取值范圍.21.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點(diǎn)M,使得⊥平面?若存在,求的值;若不存在,說明理由.22.(10分)已知兩個定點(diǎn),,動點(diǎn)滿足,設(shè)動點(diǎn)的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的斜率;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,設(shè)每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設(shè)第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B2、A【解析】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,求出點(diǎn)的坐標(biāo),根據(jù)可得出,可得出,,結(jié)合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,由圖可知,點(diǎn)第一象限,將代入橢圓方程得,得,所以,點(diǎn),易知點(diǎn)、,,,因?yàn)?,則,得,可得,則,點(diǎn)到右準(zhǔn)線的距離為為,則,,因此,橢圓的方程為.故選:A.3、B【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B4、D【解析】根據(jù)求解即可.【詳解】因?yàn)榈缺葦?shù)列,,所以.故選:D5、C【解析】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.6、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時,表示焦點(diǎn)在軸上的橢圓,此時;當(dāng)時,表示焦點(diǎn)在軸上的雙曲線,此時.故選:C.7、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因?yàn)?,所以,所?故選:A8、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點(diǎn)M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點(diǎn)M的軌跡是以C(0,-3)為焦點(diǎn),直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點(diǎn):軌跡方程9、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當(dāng)且僅當(dāng)取等號,所以的最小值為4.故答案為:4.【點(diǎn)睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運(yùn)用不等式的性質(zhì)降低元的個數(shù),運(yùn)用均值不等式,是中檔題.10、B【解析】函數(shù)既有極大值又有極小值轉(zhuǎn)化為導(dǎo)函數(shù)在定義域上有兩個不同的零點(diǎn).【詳解】因?yàn)榧扔袠O大值又有極小值,且,所以有兩個不等的正實(shí)數(shù)解,所以,且,解得,且.故選:B.11、A【解析】利用對立事件的概率公式可求得所求事件的概率.【詳解】由對立事件概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.12、B【解析】根據(jù)基本不等式進(jìn)行求解即可.【詳解】因?yàn)檎龜?shù)x,y,所以,當(dāng)且僅當(dāng)時取等號,即時,取等號,而,所以解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時,遞減;當(dāng)時,遞增;所以,即在上恒成立,令,則,當(dāng)時,遞增;當(dāng)時,遞減;所以,綜上,.故答案為:114、(1)證明見解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點(diǎn)、,利用點(diǎn)差法可求得直線的斜率,利用點(diǎn)斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當(dāng)在橢圓的內(nèi)部時,,可得.設(shè)點(diǎn)、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達(dá)定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.15、①.4②.2【解析】根據(jù)題意建立不等式組,進(jìn)而作出可行域,最后通過數(shù)形結(jié)合求得答案.【詳解】設(shè)需要組建個小型核酸檢測點(diǎn)和個大型核酸檢測點(diǎn),則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當(dāng)直線過點(diǎn)A時,z取得最大值,由得恰為整數(shù)點(diǎn),所以組建4個小型核酸檢測點(diǎn)和2個大型核酸檢測點(diǎn),才能更高效的完成本次核酸檢測工作.故答案為:4;2.16、【解析】應(yīng)用余弦定理有,再由三角形內(nèi)角性質(zhì)及同角三角函數(shù)平方關(guān)系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當(dāng)且僅當(dāng)時等號成立,又,當(dāng)且僅當(dāng)時等號成立.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)判別式小于0可得;(2)根據(jù)復(fù)合命題的真假可知,p和q有且只有一個真命題,然后根據(jù)相應(yīng)范圍通過集合運(yùn)算可得.【小問1詳解】因?yàn)榧蠟榭占詿o實(shí)數(shù)根,即,解得,所以p為真命題時,實(shí)數(shù)a取值范圍為.【小問2詳解】由解得:,即命題q為真時,實(shí)數(shù)a的取值范圍為,易知p為假時,a的取值范圍為,q為假時,a的取值范圍為.因?yàn)闉檎婷},為假命題,則p和q有且只有一個真命題,當(dāng)p為假q為真時,實(shí)數(shù)a的取值范圍為;當(dāng)p為真q為假時,實(shí)數(shù)a的取值范圍為.綜上,實(shí)數(shù)a的取值范圍為18、(1);(2);(3).【解析】(1)運(yùn)用拋物線的定義進(jìn)行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點(diǎn)和的縱坐標(biāo),結(jié)合直線點(diǎn)斜式方程、兩點(diǎn)間距離公式進(jìn)行求解即可;(3)利用弦長公式求得,由兩點(diǎn)間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準(zhǔn)線方程為:,因?yàn)辄c(diǎn)到拋物線焦點(diǎn)的距離為,所以有;小問2詳解】由題意知,,,設(shè),則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設(shè),,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因?yàn)椋?,化簡得,解得(舍?fù)),即,所以【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用拋物線的定義、弦長公式進(jìn)行求解是解題的關(guān)鍵.19、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時,;當(dāng)時,,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因?yàn)?,故?dāng)時,,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時,,時,,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點(diǎn)睛】思路點(diǎn)睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.20、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(2)利用常變量分離法,通過構(gòu)造新函數(shù),由方程有兩個不同的實(shí)數(shù)解問題,轉(zhuǎn)化為兩個函數(shù)的圖象有兩個交點(diǎn)問題,利用導(dǎo)數(shù)進(jìn)行求解即可.【小問1詳解】設(shè)曲線的切點(diǎn)坐標(biāo)為,由,所以過該切點(diǎn)的切線的斜率為,因此該切線方程為:,因?yàn)橹本€與函數(shù)的圖象相切,所以,因?yàn)橹本€與函數(shù)的圖象相切,且函數(shù)過原點(diǎn),所以曲線的切點(diǎn)為,于是有,即;【小問2詳解】由可得:,當(dāng)時,顯然不成立,當(dāng)時,由,設(shè)函數(shù),,,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,因此當(dāng)時,函數(shù)有最小值,最小值為,而,當(dāng)時,,函數(shù)圖象如下圖所示:方程有兩個不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)和函數(shù)的圖象,在當(dāng)時,有兩個不同的交點(diǎn),由圖象可知:,故a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用常變量分離法,結(jié)合轉(zhuǎn)化法進(jìn)行求解是解題的關(guān)鍵.21、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標(biāo)表示,判斷是否存在點(diǎn)滿足.【小問1詳解】∵,E為BD的中點(diǎn)∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2177-2024防雷元件測試儀校準(zhǔn)規(guī)范
- 2024年度年福建省高校教師資格證之高等教育學(xué)自測模擬預(yù)測題庫
- 2024年度山西省高校教師資格證之高等教育心理學(xué)題庫練習(xí)試卷B卷附答案
- 2024年橡膠、橡塑制品項目投資申請報告代可行性研究報告
- 2024年一氧化二氮項目資金籌措計劃書代可行性研究報告
- 版權(quán)授權(quán)合同6篇
- 電動汽車集中充換電設(shè)施規(guī)劃和優(yōu)化運(yùn)行研究綜述
- 2024年度成品買賣協(xié)議范本
- 2024年產(chǎn)品銷售代理化協(xié)議模板
- 2024年理想婚慶場地租賃協(xié)議模板
- 大學(xué)美育(同濟(jì)大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 08D800-8民用建筑電氣設(shè)計與施工防雷與接地
- 應(yīng)急第一響應(yīng)人理論考試試卷(含答案)
- 2024年湖北省工業(yè)建筑集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 10000中國普通人名大全
- 輪扣架支模體系材料量計算
- 《短視頻拍攝腳本模板資料》視頻抖音拍攝腳本劇本分鏡表
- 玻璃纖維行業(yè)準(zhǔn)入條件(2021年修訂)
- 馬鈴薯種植技術(shù).ppt
- CRRT的原理PPT參考課件
- 現(xiàn)金流量表excel表格模板.doc
評論
0/150
提交評論