安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第1頁
安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第2頁
安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第3頁
安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第4頁
安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省巢湖第一中學2025屆高一上數(shù)學期末監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,且,則的值是A. B.C. D.2.下列函數(shù)中,值域為的偶函數(shù)是A. B.C. D.3.已知點在第二象限,則角的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.的值為A. B.C. D.5.已知,則的取值范圍是()A. B.C. D.6.當時,在同一平面直角坐標系中,函數(shù)與的圖象可能為A. B.C. D.7.對于空間中的直線,以及平面,,下列說法正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則8.已知,,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.下列說法正確的是()A.若,則B.若,則C.若,則D.若,則10.若函數(shù)的零點所在的區(qū)間為,則整數(shù)的值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.表示一位騎自行車和一位騎摩托車的旅行者在相距80km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關系,有人根據(jù)函數(shù)圖象,提出了關于這兩個旅行者的如下信息:①騎自行車者比騎摩托車者早出發(fā)3h,晚到1h;②騎自行車者是變速運動,騎摩托車者是勻速運動;③騎摩托車者在出發(fā)1.5h后追上了騎自行車者;④騎摩托車者在出發(fā)1.5h后與騎自行車者速度一樣其中,正確信息的序號是________12.已知點,,在函數(shù)的圖象上,如圖,若,則______.13.已知平面向量,的夾角為,,則=______14.,若,則________.15.已知一個圓錐的母線長為1,其高與母線的夾角為45°,則該圓錐的體積為____________.16.在平面直角坐標系中,以軸為始邊作兩個銳角,,它們的終邊分別與單位圓相交于,兩點,,的縱坐標分別為,.則的終邊與單位圓交點的縱坐標為_____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且(1)求f(x)的解析式;(2)判斷f(x)在區(qū)間(0,1)上的單調性,并用定義法證明18.已知函數(shù)是奇函數(shù),且;(1)判斷函數(shù)在區(qū)間的單調性,并給予證明;(2)已知函數(shù)(且),已知在的最大值為2,求的值19.如圖,在平行四邊形中,設,.(1)用向量,表示向量,;(2)若,求證:.20.已知函數(shù)滿足,且.(1)求a和函數(shù)的解析式;(2)判斷在其定義域的單調性.21.已知函數(shù)(a>0且)是偶函數(shù),函數(shù)(a>0且)(1)求b的值;(2)若函數(shù)有零點,求a的取值范圍;(3)當a=2時,若,使得恒成立,求實數(shù)m的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由已知利用同角三角函數(shù)基本關系式可求,的值,即可得解【詳解】由題意,知,且,所以,則,故選B【點睛】本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,其中解答中熟練應用同角三角函數(shù)的基本關系式,準確求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.2、D【解析】值域為的偶函數(shù);值域為R的非奇非偶函數(shù);值域為R的奇函數(shù);值域為的偶函數(shù).故選D3、C【解析】利用任意角的三角函數(shù)的定義,三角函數(shù)在各個象限中的負號,求得角α所在的象限【詳解】解:∵點P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α頂點為坐標原點,始邊為x軸的非負半軸,則α的終邊落在第三象限,故選:C4、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故選C.5、B【解析】根據(jù)對數(shù)函數(shù)的性質即可確定的范圍.【詳解】由對數(shù)及不等式的性質知:,而,所以.故選:B6、C【解析】當時,單調遞增,單調遞減故選7、D【解析】根據(jù)空間直線和平面的位置關系對四個選項逐一排除,由此確定正確的選項【詳解】對于A選項,可能異面,故A錯誤;對于B選項,可能有,故B錯誤;對于C選項,的夾角不一定為90°,故C錯誤;因為,故,因為,故,故D正確,故選D.【點睛】本小題主要考查空間兩條直線的位置關系,考查直線和平面、平面和平面位置關系的判斷,屬于基礎題.8、B【解析】利用充分、必要條件的定義,結合不等式的性質判斷題設條件間的推出關系,即可知條件間的充分、必要關系.【詳解】當時,若時不成立;當時,則必有成立,∴“”是“”的必要不充分條件.故選:B9、C【解析】運用作差法可以判斷C,然后運用代特殊值法可以判斷A、B、D,進而得到答案.【詳解】對A,令,則.A錯誤;對B,令,則.B錯誤;對C,因為,而,則,所以,即.C正確;對D,令,則.D不正確.故選:C.10、C【解析】結合函數(shù)單調性,由零點存在性定理可得解.【詳解】由為增函數(shù),且,可得零點所在的區(qū)間為,所以.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、①②③【解析】看時間軸易知①正確;騎摩托車者行駛的路程與時間的函數(shù)圖象是直線,所以是勻速運動,而騎自行車者行駛的路程與時間的函數(shù)圖象是折線,所以是變速運動,因此②正確;兩條曲線的交點的橫坐標對應著4.5,故③正確,④錯誤故答案為①②③.點睛:研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反映了函數(shù)的所有性質,在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學會從函數(shù)圖象上去分析問題、尋找解決問題的方法12、【解析】設的中點為,連接,由條件判斷是等邊三角形,并且求出和的長度,即根據(jù)周期求.【詳解】設的中點為,連接,,,且,是等邊三角形,并且的高是,,即,,即,解得:.故答案為:【點睛】本題考查根據(jù)三角函數(shù)的周期求參數(shù),意在考查數(shù)形結合分析問題和解決問題的能力,屬于基礎題型,本題的關鍵是利用直角三角形的性質和三角函數(shù)的性質判斷的等邊三角形.13、【解析】=代入各量進行求解即可.【詳解】=,故答案.【點睛】本題考查了向量模的求解,可以通過先平方再開方即可,屬于基礎題.14、【解析】分和兩種情況解方程,由此可得出的值.【詳解】當時,由,解得;當時,由,解得(舍去).綜上所述,.故答案為:.15、##【解析】由題可得,然后利用圓錐的體積公式即得.【詳解】設圓錐的底面半徑為r,高為h,由圓錐的母線長為1,其高與母線的夾角為45°,∴,∴該圓錐的體積為.故答案為:.16、【解析】根據(jù)任意角三角函數(shù)的定義可得,,,,再由展開求解即可.【詳解】以軸為始邊作兩個銳角,,它們的終邊分別與單位圓相交于,兩點,,的縱坐標分別為,所以,是銳角,可得,因為銳角的終邊與單位圓相交于Q點,且縱坐標為,所以,是銳角,可得,所以,所以的終邊與單位圓交點的縱坐標為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)f(x)在(0,1)上單調遞減,證明見解析.【解析】(1)根據(jù)即可求出a=b=1,從而得出;(2)容易判斷f(x)在區(qū)間(0,1)上單調遞減,根據(jù)減函數(shù)的定義證明:設x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根據(jù)x1,x2∈(0,1),且x1<x2說明f(x1)>f(x2)即可【詳解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在區(qū)間(0,1)上單調遞減,證明如下:設x1,x2∈(0,1),且x1<x2,則:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上單調遞減【點睛】本題考查減函數(shù)的定義,根據(jù)減函數(shù)的定義證明一個函數(shù)是減函數(shù)的方法和過程,清楚的單調性18、(1)函數(shù)在區(qū)間是遞增函數(shù);證明見解析;(2)或【解析】(1)由奇函數(shù)定義建立方程組可求出,再用定義法證明單調性即可;(2)根據(jù)復合函數(shù)的單調性,分類討論的單調性,結合函數(shù)的單調性研究最值即可求解【詳解】(1)∵是奇函數(shù),∴,又,且,所以,,經檢驗,滿足題意得,所以函數(shù)在區(qū)間是遞增函數(shù)證明如下:且,所以有:由,得,,又,故,所以,即,所以函數(shù)在區(qū)間是遞增函數(shù)(2)令,由(1)可得在區(qū)間遞增函數(shù),①當時,是減函數(shù),故當取得最小值時,(且)取得最大值2,在區(qū)間的最小值為,故的最大值是,∴②當時,是增函數(shù),故當取得最大值時,(且)取得最大值2,在區(qū)間的最大值為,故的最大值是,∴或19、(1),.(2)證明見解析【解析】(1)根據(jù)向量的運算法則,即可求得向量,;(2)由,根據(jù)向量的運算法則,求得,即可求解.【小問1詳解】解:在平行四邊形中,由,,根據(jù)向量的運算法則,可得,.【小問2詳解】解:因為,可得,所以.20、(1);;(2)在其定義域為單調增函數(shù).【解析】(1)由,可得,再由,可求出的值,從而可得函數(shù)的解析式;(2)利用函數(shù)的單調性定義進行判斷即可【詳解】解:(1)由,得,,得;所以;(2)該函數(shù)的定義域為,令,所以,所以,因為,,所以,所以在其定義域為單調增函數(shù).21、(1)(2)(3)【解析】(1)根據(jù)f(x)為偶函數(shù),由f(-x)=-f(x),即對恒成立求解;(2)由有零點,轉化為有解,令,轉化為函數(shù)y=p(x)圖象與直線y=a有交點求解;(3)根據(jù),使得成立,由求解.【小問1詳解】解:因f(x)為偶函數(shù),所以,都有f(-x)=-f(x),即對恒成立,對恒成立,對恒成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論