河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題含解析_第1頁
河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題含解析_第2頁
河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題含解析_第3頁
河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題含解析_第4頁
河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省平頂山舞鋼第一高級中學2025屆高二上數(shù)學期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.822.某校開學“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.363.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經(jīng)過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.4.已知函數(shù),則()A. B.0C. D.15.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.6.過兩點、的直線的傾斜角為,則的值為()A.或 B.C. D.7.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得8.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.9.拋物線的準線方程是,則a的值為()A.4 B.C. D.10.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.11.在正方體中,E,F(xiàn)分別為AB,CD的中點,則與平面所成的角的正弦值為()A. B.C. D.12.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線上的一點,是上的兩個焦點,若,則的取值范圍是_______________14.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.15.若恒成立,則______.16.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準線交于點,若,則的長為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,是橢圓:的左、右焦點,離心率為,點A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點,過的直線與橢圓C交于兩個不同點P、Q,直線BP與x軸交于點M,直線BQ與x軸交于點N,判斷是否為定值.若是,求出定值,若不是,請說明理由.18.(12分)已知,使;不等式對一切恒成立.如果為真命題,為假命題,求實數(shù)的取值范圍.19.(12分)已知平面直角坐標系上一動點滿足:到點的距離是到點的距離的2倍.(1)求點的軌跡方程;(2)若點與點關(guān)于直線對稱,求的最大值.20.(12分)設(shè),為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標;若不過定點,請說明理由21.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a22.(10分)在①,②,③,這三個條件中任選一個,補充在下面的問題中,并解答問題在中,內(nèi)角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個條件分別解答,按第一個解答計分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C2、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A3、B【解析】根據(jù)給定條件借助橢圓的光學性質(zhì)求出直線AD的方程,進而求出點D的坐標計算作答.【詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學性質(zhì)知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B4、B【解析】先求導(dǎo),再代入求值.詳解】,所以.故選:B5、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進行和兩項關(guān)系的比較,從而確定和的大小關(guān)系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.6、D【解析】利用斜率公式可得出關(guān)于實數(shù)的等式與不等式,由此可解得實數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.7、B【解析】A選項,當一真一假時也滿足條件,但不滿足為真命題;B選項,可以使用正弦定理和大邊對大角,大角對大邊進行證明;C選項,利用逆否命題的定義進行判斷,D選項,特稱命題的否定,把存在改為任意,把結(jié)論否定,故可判斷D選項.【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯誤;命題,使得,則,使得,故D錯誤.故選:B8、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結(jié)果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C9、C【解析】先求得拋物線的標準方程,可得其準線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標準方程為,準線方程為,又準線方程是,所以,所以.故選:C10、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學素養(yǎng)11、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標系用向量法求解.【詳解】設(shè)正方體棱長為2,、F分別為AB、CD的中點,由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因為,所以即為所求角,所以.故選:B12、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,.故答案為.14、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:15、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當時,遞減;當時,遞增;所以,即在上恒成立,令,則,當時,遞增;當時,遞減;所以,綜上,.故答案為:116、【解析】分別過點、作、垂直于拋物線的準線于、,則,求出直線的方程,可求得拋物線的焦點的坐標,可得出拋物線的標準方程,再將直線的方程與拋物線的方程聯(lián)立,求出點的縱坐標,利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點的縱坐標為,由,得或,因為點在、之間,則,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設(shè)直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點的坐標寫出直線,的方程,進而知點,的坐標,再結(jié)合韋達定理,進行化簡,即可得解【小問1詳解】解:因為的周長為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設(shè)其方程為,,,,,聯(lián)立,得,所以,,因為點為,所以直線的方程為,所以點,,直線的方程為,所以點,,所以,即為定值18、【解析】若真命題,利用分離參數(shù)法結(jié)合指數(shù)函數(shù)性質(zhì),可得;若為真命題,利用分離參數(shù)法并結(jié)合基本不等式可得,再根據(jù)為真命題,為假命題,可知,一真命題一假命題;再分“為真命題,為假命題”和“為假命題,為真命題”兩種情況,求解范圍,即可得到結(jié)果.【詳解】解:若為真命題,則有解,所以,即;若為真命題,則對一切恒成立,令則,當且僅當,即時,取得最小值;所以,即;又為真命題,為假命題,所以,一真命題一假命題;當為真命題,為假命題時,,所以;當為假命題,為真命題時,,所以;綜上所述,.19、(1)(2)【解析】(1)直接法求動點的軌跡方程,設(shè)點,列方程即可.(2)點關(guān)于直線對稱的對稱點問題,可以先求出點到直線的距離最值的兩倍就是的距離,也可以求出點的軌跡方程直接求解的距離.【小問1詳解】設(shè),由題意,得:,化簡得,所以點軌跡方程為【小問2詳解】方法一:設(shè),因為點與點關(guān)于點對稱,則點坐標為,因為點在圓,即上運動,所以,所以點的軌跡方程為,所以兩圓的圓心分別為,半徑均為2,則.方法二:由可得:所以點的軌跡是以為圓心,2為半徑的圓軌跡的圓心到直線的距離為:20、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達定理求,,,,再由、的方程求,坐標,若在為直徑的圓上點,由結(jié)合向量垂直的坐標表示列方程,進而求出定點坐標.【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關(guān)鍵點點睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達定理求,,,,進而根據(jù)、的方程求,坐標,再由圓的性質(zhì)及向量垂直的坐標表示求定點坐標.21、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問2詳解】∵,∴,解得由余弦定理,得,∴.22、選擇見解析;(1);(2)【解析】(1)選條件①.利用正弦定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論