遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

遼寧省葫蘆島市2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.2.已知,分別為橢圓的左右焦點,為坐標原點,橢圓上存在一點,使得,設的面積為,若,則該橢圓的離心率為()A. B.C. D.3.已知直線與直線,若,則()A.6 B.C.2 D.4.橢圓的一個焦點坐標為,則實數(shù)m的值為()A.2 B.4C. D.5.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種6.在中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.27.已知不等式只有一個整數(shù)解,則m的取值范圍是()A. B.C. D.8.如圖,在四面體中,,,,,為線段的中點,則等于()A B.C. D.9.設分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.10.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.11.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.1812.數(shù)列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.2019二、填空題:本題共4小題,每小題5分,共20分。13.與直線平行,且距離為的直線方程為______14.已知函數(shù),則的導函數(shù)______.15.若,,三點共線,則m的值為___________.16.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設,求數(shù)列的前n項和.18.(12分)“既要金山銀山,又要綠水青山”.濱江風景區(qū)在一個直徑為100米的半圓形花園中設計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設計為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再從點到點設計為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)19.(12分)求下列函數(shù)的導數(shù):(1);(2).20.(12分)已知橢圓上的點到焦點的最大距離為3,離心率為.(1)求橢圓的標準方程;(2)設直線與橢圓交于不同兩點,與軸交于點,且滿足,若,求實數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,底面為正方形,底面,,為棱的中點.(1)求直線與所成角的余弦值;(2)求直線與平面所成角的正弦值;(3)求二面角的余弦值.22.(10分)排一張有6個歌唱節(jié)目和5個舞蹈節(jié)目的演出節(jié)目單.(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由空間向量運算法則得,利用向量的線性運算求出結(jié)果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.2、D【解析】由可得直角三角形,故,且,結(jié)合,聯(lián)立可得,即得解【詳解】由題意,故為直角三角形,,又,,又為直角三角形,故,,即,.故選:D.3、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A4、C【解析】由焦點坐標得到,求解即可.【詳解】根據(jù)焦點坐標可知,橢圓焦點在y軸上,所以有,解得故選:C.5、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C6、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計算可得;【詳解】解:因為,又,所以,因為,所以,所以,因為,所以,即,所以或,即或(舍去),所以,因為,所以,所以;故選:C7、B【解析】依據(jù)導函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個整數(shù)解,可化為只有一個整數(shù)解令,則當時,,單調(diào)遞增;當時,,單調(diào)遞減,則當時,取最大值,當時,恒成立,的草圖如下:,,則若只有一個整數(shù)解,則,即故不等式只有一個整數(shù)解,則m的取值范圍是故選:B8、D【解析】根據(jù)空間向量的線性運算求解【詳解】由已知,故選:D9、D【解析】轉(zhuǎn)化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設,圓心為,則,當時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關(guān)鍵是圓上的點轉(zhuǎn)化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結(jié)論10、B【解析】由已知條件得出,結(jié)合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.11、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關(guān)判斷,解題的關(guān)鍵是得出.12、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】由題意,設所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設所求直線方程為,因為直線與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.14、【解析】利用基本初等函數(shù)的求導公式及積的求導法則計算作答.【詳解】函數(shù)定義域為,則,所以.故答案為:15、【解析】根據(jù)三點共線與斜率的關(guān)系即可得出【詳解】由,,三點共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:16、##【解析】直接根據(jù)概率和為1計算得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)當時,由,得,兩式相減化簡可得,再對等式兩邊同時減去1,化簡可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當時,.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)列是等比數(shù)列.【小問2詳解】由(1)得,,.18、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因為所以,當單調(diào)遞增,當單調(diào)遞減,所以當時,使得綠化帶總長度最大.【點睛】關(guān)鍵點點睛:仔細審題,注意題目中的關(guān)鍵詞“兩側(cè)”和“一側(cè)”是解題關(guān)鍵.19、(1);(2).【解析】(1)根據(jù)導數(shù)的加法運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可;(2)根據(jù)導數(shù)的加法和乘法的運算法則,結(jié)合常見函數(shù)的導數(shù)進行求解即可.【小問1詳解】;【小問2詳解】.20、(1)(2),或【解析】(1)由橢圓的性質(zhì)可知:,解得a和c的值,即可求得橢圓C的標準方程;(2)將直線方程代入橢圓方程,由韋達定理求得:,,λ,根據(jù)向量的坐標坐標,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得實數(shù)m的取值范圍【詳解】(1)由已知,解得,所以,所以橢圓的標準方程為.(2)由已知,設,聯(lián)立方程組,消得,由韋達定理得①②因為,所以,所以③,將③代入①②,,消去得,所以.因為,所以,即,解得,所以,或.【點睛】本題考查橢圓的標準方程及簡單性質(zhì),直線與橢圓的位置關(guān)系,韋達定理,向量的坐標表示,不等式的解法,考查計算能力,屬于中檔題21、(1);(2);(3).【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設.(1)寫出、的坐標,利用空間向量法計算出直線與所成角的余弦值;(2)求出平面的一個法向量的坐標,利用空間向量法可計算得出直線與平面所成角的正弦值;(3)求出平面的一個法向量的坐標,利用空間向量法可求得二面角的余弦值.【詳解】平面,四邊形為正方形,設.以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如下圖所示:則、、、、、.(1),,,所以,異面直線、所成角的余弦值為;(2)設平面的一個法向量為,,,由,可得,取,可得,則,,,因此,直線與平面所成角的正弦值為;(3)設平面的一個法向量為,,,由,可得,得,取,則,,所以,平面的一個法向量為,,由圖形可知,二面角為銳角,因此,二面角的余弦值為.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論