版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
天津市部分學(xué)校2025屆高二上數(shù)學(xué)期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.2.拋物線的準(zhǔn)線方程為,則實數(shù)的值為()A. B.C. D.3.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.4.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形5.已知拋物線的焦點為,直線過點與拋物線相交于兩點,且,則直線的斜率為()A. B.C. D.6.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.7.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.8.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.9.過兩點、的直線的傾斜角為,則的值為()A.或 B.C. D.10.在等比數(shù)列中,,,則等于()A. B.5C. D.911.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-412.設(shè)函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標(biāo)原點).若,則的取值范圍是______14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準(zhǔn)線交于點C,若,則直線l的斜率為______.15.點到直線的距離為________.16.若斜率為的直線與橢圓交于,兩點,且的中點坐標(biāo)為,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)書籍是精神世界的入口,閱讀讓精神世界閃光,閱讀逐漸成為許多人的一種生活習(xí)慣,每年4月23日為世界讀書日.某研究機構(gòu)為了解當(dāng)?shù)啬贻p人的閱讀情況,通過隨機抽樣調(diào)查了100位年輕人,對這些人每天的閱讀時間(單位:分鐘)進行統(tǒng)計,得到樣本的頻率分布直方圖,如圖所示:(1)求的值;(2)為了進一步了解年輕人的閱讀方式,研究機構(gòu)采用分層抽樣的方法從每天閱讀時間位于,和的年輕人中抽取5人,再從中任選2人進行調(diào)查,求其中至少有1人每天閱讀時間位于的概率.18.(12分)設(shè),為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當(dāng)直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當(dāng)直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標(biāo);若不過定點,請說明理由19.(12分)在平面直角坐標(biāo)系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設(shè)不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關(guān)系,并證明你的結(jié)論20.(12分)已知橢圓的左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標(biāo)原點;(2)設(shè)點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程21.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項公式:(2)在數(shù)列的每相鄰兩項與間插入個,使它們和原數(shù)列的項構(gòu)成一個新數(shù)列,數(shù)列的前項和記為,求及.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B2、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B3、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.4、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C5、B【解析】設(shè)直線傾斜角為,由,及,可求得,當(dāng)點在軸上方,又,求得,利用對稱性即可得出結(jié)果.【詳解】設(shè)直線傾斜角為,由,所以,由,,所以,當(dāng)點在軸上方,又,所以,所以由對稱性知,直線的斜率.故選:B.6、A【解析】不妨設(shè)橢圓的焦點在軸上,設(shè)點,則,且有,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】不妨設(shè)橢圓的焦點在軸上,則該橢圓的標(biāo)準(zhǔn)方程為,設(shè)點,則,且有,所以,.故選:A.7、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C8、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.9、D【解析】利用斜率公式可得出關(guān)于實數(shù)的等式與不等式,由此可解得實數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.10、D【解析】由等比數(shù)列的項求公比,進而求即可.【詳解】由題設(shè),,∴故選:D11、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時,取極大值,極大值是時,函數(shù)取極小值,極小值是,而時,時,,故函數(shù)的最小值為,故選C.12、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當(dāng)時,,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.14、【解析】由拋物線方程求出焦點坐標(biāo)與準(zhǔn)線方程,設(shè)直線為,、,即可得到的坐標(biāo),再聯(lián)立直線與拋物線方程,消元列出韋達定理,表示出、的坐標(biāo),根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準(zhǔn)線為,設(shè)直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:15、【解析】利用點到直線的距離公式即可得出【詳解】利用點到直線的距離可得:故答案為:16、-1【解析】根據(jù)給定條件設(shè)出點A,B的坐標(biāo),再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由頻率之和為1求參數(shù).(2)由分層抽樣的比例可得抽取的5人中,和分別為:1人,2人,2人,再應(yīng)用列舉法寫出所有基本事件,根據(jù)古典概型的概率計算即可.小問1詳解】根據(jù)頻率分布直方圖得:,解得;【小問2詳解】由于,和的頻率之比為:,故抽取的5人中,,和別為:1人,2人,2人,記的1人為,的2人為,,的2人為,,故隨機抽取2人共有,,,,,,,,,10種,其中至少有1人每天閱讀時間位于的包含,,,,,,共7種,故概率.18、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達定理求,,,,再由、的方程求,坐標(biāo),若在為直徑的圓上點,由結(jié)合向量垂直的坐標(biāo)表示列方程,進而求出定點坐標(biāo).【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關(guān)鍵點點睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達定理求,,,,進而根據(jù)、的方程求,坐標(biāo),再由圓的性質(zhì)及向量垂直的坐標(biāo)表示求定點坐標(biāo).19、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設(shè)直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長公式可求,可轉(zhuǎn)化為,結(jié)合韋達定理可化簡,進而得證.【小問1詳解】設(shè),,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設(shè)直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標(biāo)為,直線方程為,由方程組,得,,所以又所以.20、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標(biāo)原點(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設(shè),則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標(biāo)原點【小問2詳解】當(dāng)直線的斜率存在時,設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當(dāng)時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當(dāng)直線的斜率不存在時,因為,所以直線的方程為,經(jīng)驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標(biāo)為,故動點的軌跡方程為.21、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版臨時工文化演藝活動支持協(xié)議3篇
- 二零二五版文化創(chuàng)意產(chǎn)業(yè)合作收益結(jié)算協(xié)議合同3篇
- 二零二五年男方房產(chǎn)歸男方無債務(wù)離婚協(xié)議書模板3篇
- 2024糯玉米產(chǎn)業(yè)鏈企業(yè)知識產(chǎn)權(quán)保護合作協(xié)議3篇
- 2025年大摩中金退出合同執(zhí)行倒計時監(jiān)督書2篇
- 個人名下車輛抵押借款合同書版
- 二零二五年度鋼材期貨交易合同3篇
- 二手房交易協(xié)議模板2024版版B版
- 2025年度數(shù)字經(jīng)濟產(chǎn)業(yè)園區(qū)租賃及網(wǎng)絡(luò)安全保障合同4篇
- Unit5 Let's eat Part A let's learn說課稿-2024-2025學(xué)年人教PEP版英語三年級上冊
- 《水下拋石基床振動夯實及整平施工規(guī)程》
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測卷(一)試題和答案
- 2025四川中煙招聘高頻重點提升(共500題)附帶答案詳解
- 2025年云南大理州工業(yè)投資(集團)限公司招聘31人管理單位筆試遴選500模擬題附帶答案詳解
- 風(fēng)電危險源辨識及控制措施
- 《教師職業(yè)道德與政策法規(guī)》課程教學(xué)大綱
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 兒童傳染病預(yù)防課件
- 護理組長年底述職報告
- 集裝箱活動房供需合同
評論
0/150
提交評論