版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆四川省成都實(shí)驗(yàn)中學(xué)高一上數(shù)學(xué)期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)在區(qū)間上單調(diào)遞增,若成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.若函數(shù)y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個(gè)公共點(diǎn),則實(shí)數(shù)t的所有取值之和為()A.2 B.C.1 D.3.下列函數(shù)中,是偶函數(shù)且值域?yàn)榈氖牵ǎ〢. B.C. D.4.已知函數(shù)f(x)=,若f(a)=f(b)=f(c)且a<b<c,則ab+bc+ac的取值范圍為()A. B.C. D.5.使得成立的一個(gè)充分不必要條件是()A. B.C. D.6.已知,,,則a,b,c的大小關(guān)系為()A B.C. D.7.函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象必經(jīng)過點(diǎn)A.(0,1) B.(1,1)C.(2,0) D.(2,2)8.已知函數(shù),若對任意,總存在,使得不等式都恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.9.下列各組函數(shù)是同一函數(shù)的是()①與;②與;③與;④與A.①② B.①③C.③④ D.①④10.已知函數(shù),則函數(shù)的最小正周期為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若,則________12.定義域?yàn)樯系暮瘮?shù)滿足,且當(dāng)時(shí),,若,則a的取值范圍是______13.向量在邊長為1的正方形網(wǎng)格中的位置如圖所示,則__________14.函數(shù)的定義域是____________.(用區(qū)間表示)15.已知扇形的圓心角為,扇形的面積為,則該扇形的弧長為____________.16.已知且,且,函數(shù)的圖象過定點(diǎn)A,A在函數(shù)的圖象上,且函數(shù)的反函數(shù)過點(diǎn),則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某企業(yè)為努力實(shí)現(xiàn)“碳中和”目標(biāo),計(jì)劃從明年開始,通過替換清潔能源減少碳排放量,每年減少的碳排放量占上一年的碳排放量的比例均為,并預(yù)計(jì)年后碳排放量恰好減少為今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量為今年碳排放量的,按照計(jì)劃至少再過多少年,碳排放量不超過今年碳排放量的?18.已知函數(shù).(1)當(dāng)時(shí),試判斷并證明其單調(diào)性.(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.19.已知全集,集合,.(1)當(dāng)時(shí),求;(2)命題p:,命題q:,若q是p的必要條件,求實(shí)數(shù)a的取值范圍.20.已知二次函數(shù)的圖象關(guān)于直線對稱,且關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根.(1)的值域;(2)若函數(shù)且在上有最小值,最大值,求的值.21.整治人居環(huán)境,打造美麗鄉(xiāng)村,某村準(zhǔn)備將一塊由一個(gè)半圓和長方形組成的空地進(jìn)行美化,如圖,長方形的邊為半圓的直徑,O為半圓的圓心,,現(xiàn)要將此空地規(guī)劃出一個(gè)等腰三角形區(qū)域(底邊)種植觀賞樹木,其余的區(qū)域種植花卉.設(shè).(1)當(dāng)時(shí),求的長;(2)求三角形區(qū)域面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由增函數(shù)的性質(zhì)及定義域得對數(shù)不等式組,再對數(shù)函數(shù)性質(zhì)可求解【詳解】不等式即為,∵函數(shù)在區(qū)間上單調(diào)遞增,∴,即,解得,∴實(shí)數(shù)的取值范圍是,選A【點(diǎn)睛】本題考查函數(shù)的單調(diào)性應(yīng)用,考查解函數(shù)不等式,解題時(shí)除用函數(shù)的單調(diào)性得出不等關(guān)系外,一定要注意函數(shù)的定義域的約束,否則易出錯(cuò)2、C【解析】可直接根據(jù)題意轉(zhuǎn)化為方程有兩個(gè)根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個(gè)t的值【詳解】由題意得方程有兩個(gè)不等實(shí)根,當(dāng)方程有兩個(gè)非負(fù)根時(shí),令時(shí),則方程為,整理得,解得;當(dāng)時(shí),,解得,故不滿足滿足題意;當(dāng)方程有一個(gè)正跟一個(gè)負(fù)根時(shí),當(dāng)時(shí),,,解得,當(dāng)時(shí),方程為,,解得;當(dāng)方程有兩個(gè)負(fù)根時(shí),令,則方程為,解得,當(dāng),,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【點(diǎn)睛】本題是在二次函數(shù)的基礎(chǔ)上加了絕對值,所以首先需解決絕對值,關(guān)于去絕對值直接用分類討論思想即可;關(guān)于二次函數(shù)根的分布需結(jié)合對稱軸,判別式,進(jìn)而判斷,必要時(shí)可結(jié)合進(jìn)行判斷3、D【解析】分別判斷每個(gè)選項(xiàng)函數(shù)的奇偶性和值域即可.【詳解】對A,,即值域?yàn)?,故A錯(cuò)誤;對B,的定義域?yàn)?,定義域不關(guān)于原點(diǎn)對稱,不是偶函數(shù),故B錯(cuò)誤;對C,的定義域?yàn)?,定義域不關(guān)于原點(diǎn)對稱,不是偶函數(shù),故C錯(cuò)誤;對D,的定義域?yàn)?,,故是偶函?shù),且,即值域?yàn)?,故D正確.故選:D.4、D【解析】畫出函數(shù)的圖象,根據(jù),,互不相等,且(a)(b)(c),我們令,我們易根據(jù)對數(shù)的運(yùn)算性質(zhì),及,,的取值范圍得到的取值范圍【詳解】解:作出函數(shù)的圖象如圖,不妨設(shè),,,,,,由圖象可知,,則,解得,,則,解得,,的取值范圍為故選.【點(diǎn)睛】本題主要考查分段函數(shù)、對數(shù)的運(yùn)算性質(zhì)以及利用數(shù)形結(jié)合解決問題的能力,解答的關(guān)鍵是圖象法的應(yīng)用,即利用函數(shù)的圖象交點(diǎn)研究方程的根的問題,屬于中檔題.5、C【解析】由不等式、正弦函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),結(jié)合充分、必要性的定義判斷選項(xiàng)條件與已知條件的關(guān)系.【詳解】A:不一定有不成立,而有成立,故為必要不充分條件;B:不一定成立,而也不一定有,故為既不充分也不必要條件;C:必有成立,當(dāng)不一定有成立,故為充分不必要條件;D:必有成立,同時(shí)必有,故為充要條件.故選:C.6、A【解析】比較a,b,c的值與中間值0和1的大小即可﹒【詳解】,,所以,故選:A.7、D【解析】根據(jù)a0=1(a≠0)時(shí)恒成立,我們令函數(shù)y=ax﹣2+1解析式中的指數(shù)部分為0,即可得到函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象恒過點(diǎn)的坐標(biāo)解:∵當(dāng)X=2時(shí)y=ax﹣2+1=2恒成立故函數(shù)y=ax﹣2+1(a>0且a≠1)的圖象必經(jīng)過點(diǎn)(2,2)故選D考點(diǎn):指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)8、D【解析】探討函數(shù)性質(zhì),求出最大值,再借助關(guān)于a函數(shù)單調(diào)性列式計(jì)算作答.【詳解】依題意,,則是上的奇函數(shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,則,由奇函數(shù)性質(zhì)知,函數(shù)在上的最大值是,依題意,存在,,令,顯然是一次型函數(shù),因此,或,解得或,所以實(shí)數(shù)的取值范圍為.故選:D9、C【解析】定義域相同,對應(yīng)關(guān)系一致的函數(shù)是同一函數(shù),由此逐項(xiàng)判斷即可.【詳解】①中的定義域?yàn)?,的定義域也是,但與對應(yīng)關(guān)系不一致,所以①不是同一函數(shù);②中與定義域都是R,但與對應(yīng)關(guān)系不一致,所以②不是同一函數(shù);③中與定義域都是,且,對應(yīng)關(guān)系一致,所以③是同一函數(shù);④中與定義域和對應(yīng)關(guān)系都一致,所以④是同一函數(shù).故選C【點(diǎn)睛】本題主要考查同一函數(shù)的概念,只需定義域和對應(yīng)關(guān)系都一致即可,屬于基礎(chǔ)題型.10、C【解析】去絕對值符號,寫出函數(shù)的解析式,再判斷函數(shù)的周期性【詳解】,其中,所以函數(shù)的最小正周期,選擇C【點(diǎn)睛】本題考查三角函數(shù)最小正周期的判斷方法,需要對三角函數(shù)的解析式整理后,根據(jù)函數(shù)性質(zhì)求得二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】由已知條件可得,構(gòu)造函數(shù),求導(dǎo)后可判斷函數(shù)在上單調(diào)遞增,再由,得,從而可求得答案【詳解】由題意得,,令,則,所以在上單調(diào)遞增,因?yàn)?,所以,所以,故答案為?12、【解析】根據(jù),可得函數(shù)圖象關(guān)于直線對稱,當(dāng)時(shí),,可設(shè),根據(jù),即可求解;【詳解】解:,的函數(shù)圖象關(guān)于直線對稱,函數(shù)關(guān)于y軸對稱,當(dāng)時(shí),,那么時(shí),,可得,由,得解得:;故答案為.【點(diǎn)睛】本題考查了函數(shù)的性質(zhì)的應(yīng)用及不等式的求解,屬于中檔題.13、3【解析】由題意可知故答案為314、【解析】函數(shù)定義域?yàn)楣蚀鸢笧?15、【解析】利用扇形的面積求出扇形的半徑,再帶入弧長計(jì)算公式即可得出結(jié)果.【詳解】解:由于扇形的圓心角為,扇形的面積為,則扇形的面積,解得:,此扇形所含的弧長.故答案為:.16、8【解析】由圖象平移變換和指數(shù)函數(shù)的性質(zhì)可得點(diǎn)A坐標(biāo),然后結(jié)合反函數(shù)的性質(zhì)列方程組可解.【詳解】函數(shù)的圖象可以由的圖象向右平移2各單位長度,再向上平移3個(gè)單位長度得到,故點(diǎn)A坐標(biāo)為,又的反函數(shù)過點(diǎn),所以函數(shù)過點(diǎn),所以,解得,所以.故答案為:8三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)年.【解析】(1)設(shè)今年碳排放量為,則由題意得,從而可求出的值;(2)設(shè)再過年碳排放量不超過今年碳排放量的,則,再把代入解關(guān)于的不等式即可得答案【詳解】解:設(shè)今年碳排放量為.(1)由題意得,所以,得.(2)設(shè)再過年碳排放量不超過今年碳排放量,則,將代入得,即,得.故至少再過年,碳排放量不超過今年碳排放量的.18、(1)單調(diào)遞增,證明見解析;(2).【解析】(1)利用單調(diào)性定義證明的單調(diào)性;(2)根據(jù)奇偶性定義判斷奇偶性,結(jié)合(1)的區(qū)間單調(diào)性確定上的單調(diào)性,進(jìn)而求的值域,令將問題轉(zhuǎn)化為求參數(shù)范圍.【小問1詳解】在上單調(diào)遞增,證明如下:,且,則,由得:,,所以,即在上的單調(diào)遞增【小問2詳解】由題設(shè),使,又,即是偶函數(shù),結(jié)合(1)知:在單調(diào)遞減,在上單調(diào)遞增,又,所以,即,令,則使,可得,令在單調(diào)遞增,故;所以,即.19、(1)(2)【解析】(1)先解分式不等式和二次不等式得集合,再求補(bǔ)集和交集即可;(2)先判斷得,再根據(jù)必要條件得到集合的包含關(guān)系,列不等式求解即可.【小問1詳解】∵時(shí),,,全集,∴或.∴【小問2詳解】∵命題:,命題:,是必要條件,∴∵,∴,∵,,∴,解得或,故實(shí)數(shù)的取值范圍20、(1)(2)或【解析】(1)由題意可得且,從而可求出的值,則得,然后求出的值域,進(jìn)而可求出的值域,(2)函數(shù),設(shè),則,然后分和兩種情況求的最值,列方程可求出的值【小問1詳解】根據(jù)題意,二次函數(shù)的圖象關(guān)于直線對稱,則有,即,①又由方程即有兩個(gè)相等的實(shí)數(shù)根,則有,②聯(lián)立①②可得:,,則,則有,則,即函數(shù)的值域?yàn)椋弧拘?詳解】根據(jù)題意,函數(shù),設(shè),則,當(dāng)時(shí),,則有,而,若函數(shù)在上有最小值,最大值,則有,解可得,即,當(dāng)時(shí),,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB51T 1466-2012 馬尾松二元立木材積表、單木出材率表
- DB51T 826-2011 芋生產(chǎn)技術(shù)規(guī)程
- 粘土蒙脫石生產(chǎn)加工項(xiàng)目可行性研究報(bào)告
- 新建螺母劈開器項(xiàng)目立項(xiàng)申請報(bào)告
- c 銀行課課程設(shè)計(jì)
- (投資方案)制磚機(jī)械項(xiàng)目可行性研究報(bào)告
- 2024年電子零售物流協(xié)同合同6篇
- 2024-2030年新版中國銀剛絨項(xiàng)目可行性研究報(bào)告
- 2024-2030年數(shù)碼產(chǎn)品設(shè)計(jì)公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年撰寫:中國車用ABS合金項(xiàng)目風(fēng)險(xiǎn)評估報(bào)告
- 【S】幼兒繪本故事《三只小豬》課件
- 企業(yè)安全風(fēng)險(xiǎn)分級管控21類表格、標(biāo)牌
- 醫(yī)院護(hù)理培訓(xùn)課件:《大腸息肉(結(jié)腸息肉)中醫(yī)護(hù)理方案》
- 國開2023法律職業(yè)倫理-形考冊答案
- 中國風(fēng)古風(fēng)古代詩人作家人物介紹蘇東坡傳PPT模板
- (完整)消化性潰瘍PPT課件ppt
- 2022年軍隊(duì)文職《數(shù)學(xué)2+物理》真題-1
- 大學(xué)英語2(含答案)
- 遼寧省大連市2023-2024學(xué)年數(shù)學(xué)四年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含答案
- 蘭州市城市垃圾處理費(fèi)征收管理辦法
- 井岡山斗爭和井岡山精神教學(xué)課件
評論
0/150
提交評論