版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆黔東南市重點中學高二數(shù)學第一學期期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓是橢圓上關(guān)于原點對稱的兩點,設以為對角線的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.2.直線在y軸上的截距為()A. B.C. D.3.數(shù)列中,滿足,,設,則()A. B.C. D.4.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支5.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.6.已知的三個頂點是,,,則邊上的高所在的直線方程為()A. B.C. D.7.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤58.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.29.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓10.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.橢圓與雙曲線有公共的焦點、,與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.12.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.設、為正數(shù),若,則的最小值是______,此時______.14.若,則__________15.若正實數(shù)滿足,則的最大值是________16.已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,右焦點為F,點A(a,0),且|AF|=1(1)求橢圓C的方程;(2)過點F的直線l(不與x軸重合)交橢圓C于點M,N,直線MA,NA分別與直線x=4交于點P,Q,求∠PFQ的大小18.(12分)在平面直角坐標系xOy中,O為坐標原點,已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點M在第一三象限的角平分線上.(1)求實數(shù)m的值;(2)若點P在直線l上且,求點P的坐標.19.(12分)已知函數(shù),且)的圖象經(jīng)過點和
.(1)求實數(shù),的值;(2)若,求數(shù)列前項和
.20.(12分)在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值21.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程22.(10分)某項目的建設過程中,發(fā)現(xiàn)其補貼額x(單位:百萬元)與該項目的經(jīng)濟回報y(單位:千萬元)之間存在著線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表:補貼額x(單位:百萬元)23456經(jīng)濟回報y(單位:千萬元)2.5344.56(1)請根據(jù)上表所給的數(shù)據(jù),求出y關(guān)于x的線性回歸直線方程;(2)為高質(zhì)量完成該項目,決定對負責該項目的7名工程師進行考核.考核結(jié)果為4人優(yōu)秀,3人合格.現(xiàn)從這7名工程師中隨機抽取3人,用X表示抽取的3人中考核優(yōu)秀的人數(shù),求隨機變量X的分布列與期望.參考公式:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)橢圓的對稱性和平行四邊形的性質(zhì)進行求解即可.【詳解】是橢圓上關(guān)于原點對稱兩點,所以不妨設,即,因為平行四邊形也是中心對稱圖形,所以也是橢圓上關(guān)于原點對稱的兩點,所以不妨設,即,,得:,即,故選:C2、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D3、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應用,意在考查學生合情推理的意識和數(shù)學建模能力4、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A5、A【解析】設5人分到的面包數(shù)量從小到大記為,設公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關(guān)于關(guān)系式,即可求出結(jié)論.【詳解】設5人分到的面包數(shù)量從小到大記為,設公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質(zhì)應用是解題的關(guān)鍵,屬于中檔題.6、B【解析】求出邊上的高所在的直線的斜率,再利用點斜式方程可得答案.【詳解】因為,所以邊上的高所在的直線的斜率為,所以邊上的高所在的直線方程為,即.故選:B.7、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C8、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C9、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C10、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點睛】本題考查直線一般式中直線與直線垂直的系數(shù)關(guān)系,考查充分性和必要性的判斷,是基礎題.11、B【解析】求得,可得出,設橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設,設雙曲線的實軸長為,因為與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.12、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.4②.【解析】巧用“1”改變目標式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當且僅當即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題14、【解析】分別令和,再將兩個等式相加可求得的值.【詳解】令,則;令,則.上述兩式相加得故答案為:.【點睛】本題考查偶數(shù)項系數(shù)和的計算,一般令和,通過對等式相加減求得,考查計算能力,屬于中等題.15、4【解析】由基本不等式及正實數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實數(shù)、滿足,,可得,當且僅當時等號成立,故的最大值為,故答案為:4.16、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導后,令求得兩根,分別在、和三種情況下根據(jù)導函數(shù)的正負得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點睛】本題考查利用導數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)∠PFQ=90°【解析】(1)由題意得求出a,c,然后求解b,即可得到橢圓方程(2)當直線l的斜率不存在時,驗證,即∠PFQ=90°.當直線l的斜率存在時,設l:y=k(x﹣1),其中k≠0.聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由題意,知Δ>0恒成立,設M(x1,y1),N(x2,y2),利用韋達定理,結(jié)合直線MA的方程為.求出、.利用向量的數(shù)量積,轉(zhuǎn)化求解即可【小問1詳解】由題意得解得a=2,c=1,從而,所以橢圓C的方程為【小問2詳解】當直線l的斜率不存在時,有,,P(4,﹣3),Q(4,3),F(xiàn)(1,0),則,,故,即∠PFQ=90°當直線l的斜率存在時,設l:y=k(x﹣1),其中k≠0聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0由題意,知Δ>0恒成立,設M(x1,y1),N(x2,y2),則,直線MA的方程為,令x=4,得,即,同理可得所以,因為0,所以∠PFQ=90°綜上,∠PFQ=90°18、(1)3(2)【解析】(1)求出直線與直線的交點坐標,代入直線的方程可得值;(2)設,代入已知等式可求得值,得坐標【小問1詳解】由得,即所以,【小問2詳解】由(1)直線方程是,在直線上,設,則,解得,所以點坐標為19、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結(jié)合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.20、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結(jié)果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結(jié)合韋達定理可得結(jié)果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司干部 質(zhì)量、環(huán)境方針、目標培訓
- 垃圾不落地校園更美麗主題班會
- 招標知識培訓課件制作
- 人工智能背景下的中醫(yī)舌診客觀化研究概述
- 2025年度企業(yè)稅收籌劃及稅務風險控制合同2篇
- 二零二五年度房產(chǎn)投資顧問代理服務合同模板3篇
- 臨床內(nèi)鏡下粘膜剝離術(shù)(ESD)護理要點及健康教育
- 二零二五年度房地產(chǎn)企業(yè)貸款定金合同3篇
- Unit 4 Friends Lesson 4(說課稿)-2024-2025學年人教精通版(2024)英語三年級上冊
- 2025年度XX新能源項目技術(shù)轉(zhuǎn)讓居間合同
- 2024-2025學年遼寧省沈陽市高一上學期1月期末質(zhì)量監(jiān)測數(shù)學試題(含解析)
- 物理(四川)-【八省聯(lián)考】河南、山西、陜西、內(nèi)蒙古、四川、云南、寧夏、青海八省2025年高考綜合改革適應性演練聯(lián)考試題和答案
- 2025年西藏拉薩市柳梧新區(qū)城市投資建設發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 斷絕關(guān)系協(xié)議書
- 2023-建筑施工技02課件講解
- 2025年部編版一年級語文上冊期末復習計劃
- 2024高考物理一輪復習:觀察電容器的充、放電現(xiàn)象(練習)(學生版+解析)
- 2024年度內(nèi)蒙古自治區(qū)國家電網(wǎng)招聘之電工類綜合練習試卷A卷附答案
- 零售服務質(zhì)量提升
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
評論
0/150
提交評論