版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆全國百校名師聯盟數學高二上期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元2.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知等比數列的公比q為整數,且,,則()A.2 B.3C.-2 D.-34.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-95.在空間四邊形中,,,,且,則()A. B.C. D.6.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形7.若變量x,y滿足約束條件,則目標函數最大值為()A.1 B.-5C.-2 D.-78.某高校甲、乙兩位同學大學四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個等級)的條形圖如圖所示,則甲成績等級的中位數與乙成績等級的眾數分別是()A.3,5 B.3,3C.3.5,5 D.3.5,49.的三個內角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.10.已知數列是等比數列,,數列是等差數列,,則的值是()A. B.C. D.11.若,則()A.1 B.0C. D.12.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,若,則______14.某次實驗得到如下7組數據,通過判斷知道與具有線性相關性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.815.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.16.不等式是的解集為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.18.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.19.(12分)已知數列{an}的前n項和為Sn,.(1)求數列{an}通項公式;(2)求數列的前n項和,求使不等式成立的最大整數m的值.20.(12分)在實驗室中,研究某種動物是否患有某種傳染疾病,需要對其血液進行檢驗.現有份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需要檢驗n次;二是混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,如果檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結果為陽性,為了明確這k份究竟哪些為陽性,就需要對它們再次取樣逐份檢驗,那么這k份血液的檢驗次數共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的.且每份樣本是陽性結果的概率為(1)假設有5份血液樣本,其中只有2份血液樣本為陽性,若采用逐份檢驗方式,求恰好經過3次檢驗就能把陽性樣本全部檢測出來的概率;(2)假設有4份血液樣本,現有以下兩種方案:方案一:4個樣本混合在一起檢驗;方案二:4個樣本平均分為兩組,分別混合在一起檢驗若檢驗次數的期望值越小,則方案越優(yōu)現將該4份血液樣本進行檢驗,試比較以上兩個方案中哪個更優(yōu)?21.(12分)已知函數(1)若,求函數的單調區(qū)間;(2)若函數有兩個不相等的零點,證明:22.(10分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D2、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.3、A【解析】由等比數列的性質有,結合已知求出基本量,再由即可得答案.【詳解】因為,,且q為整數,所以,,即q=2.所以.故選:A4、D【解析】作出可行域,作出目標函數對應的直線,平移該直線可得最優(yōu)解【詳解】解:作出可行域,如圖內部(含邊界),作直線,在中,,當直線向下平移時,增大,因此把直線向上平移,當直線過點時,故選:D5、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.6、C【解析】根據三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.7、A【解析】作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數,得,故選:A8、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數,由圖可知乙的選修課等級的眾數.【詳解】由條形圖可得,甲同學共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數為,乙成績等級的眾數為5.故選:C.9、D【解析】利用正弦定理邊化角,角化邊計算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.10、B【解析】根據等差數列和等比數列下標和的性質即可求解.【詳解】為等比數列,,,,;為等差數列,,,,,∴.故選:B.11、C【解析】由結合二項式定理可得出,利用二項式系數和公式可求得的值.【詳解】,當且時,,因此,.故選:C.【點睛】關鍵點睛:本題考查二項式系數和的計算,解題的關鍵是熟悉二項式系數和公式,考查學生的轉化能力與計算能力,屬于基礎題.12、B【解析】分析:由雙曲線性質得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:14、9##【解析】求得樣本中心點的坐標,代入回歸直線,即可求得.詳解】根據表格數據可得:故,解得.故答案為:.15、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.16、【解析】由可得,結合分式不等式的解法即可求解.【詳解】由可得,整理可得:,則,解可得:.所以不等式是的解集為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設每件定價為x元,可得提高價格后的銷售量,根據銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當x>25時,不等式有解,等價于x>25時,有解.由于,當且僅當,即x=30時等號成立,所以a≥10.2.當該商品改革后的銷售量a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.18、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標,再進行數量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當且僅當時等號成立,所以的最小值是1.19、(1);(2).【解析】(1)根據給定的遞推公式變形,再構造常數列求解作答.(2)利用(1)的結論求出,再利用裂項相消法求和,由單調性求出最大整數m值作答.【小問1詳解】依題意,,當時,,兩式相減得:,即,整理得:,于是得,所以數列{an}的通項公式是.【小問2詳解】由(1)得,,數列是遞增數列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數m的值是505.【點睛】思路點睛:使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質上造成正負相消是此法的根源與目的20、(1)(2)方案一更優(yōu)【解析】(1)分兩類,由古典概型可得;(2)分別求出兩種方案的數學期望,然后比較可知.【小問1詳解】恰好經過3次檢驗就能把陽性樣本全部檢測出來分為兩種情況:第一種:前兩次檢測中出現一次陽性一次陰性且第三次為陽性第二種:前三次檢測均陰性,所以概率為【小問2詳解】方案一:混在一起檢驗,記檢驗次數為X,則X的取值范圍是,,,方案二:每組的兩個樣本混合在一起檢驗,若結果呈陰性,則檢驗次數為1,其概率為,若結果呈陽性,則檢驗次數為3,其概率為設檢驗次數為隨機變量Y,則Y的取值范圍是,,,,,所以,方案一更優(yōu)21、(1)單調遞增區(qū)間是(4,+∞),單調遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導函數,結合定義域及導數的符號確定單調區(qū)間;(2)法一:討論、時的零點情況,即可得,構造,利用導數研究在(0,2a)恒成立,結合單調性證明不等式;法二:設,由零點可得,進而應用分析法將結論轉化為證明,綜合換元法、導數證明結論即可.【小問1詳解】函數的定義域為(0,+∞),當a=2時,,則令得,x>4;令得,0<x<4;所以,單調遞增區(qū)間是(4,+∞);單調遞減區(qū)間是(0,4).【小問2詳解】法一:當a≤0時,>0在(0,+∞)上恒成立,故函數不可能有兩個不相等的零點,當a>0時,函數在(2a,+∞)上單調遞增,在(0,2a)上單調遞減,因為函數有兩個不相等的零點,則,不妨設,設,(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調遞減,即>=0,所以,即,又,故,因為,所以,因為函數在(2a,+∞)上單調遞增,所以,即法二:不妨設,由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調遞減,故<=0,即恒成立因此,所以.【點睛】關鍵點點睛:第二問,法一:應用極值點偏移方法構造,將問題轉化為在(0,2a)恒成立,法二:根據零點可得,再由分析法將問題化為證明,構造函數,綜合運用換元法、導數證明結論.22、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質,證得平面,進而可得,平面即可得證;(2)在平面ABC內過點A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅中醫(yī)藥大學《安全評價理論與技術》2023-2024學年第一學期期末試卷
- 超市購物小學生課件
- 七年級生物上冊第三單元第六章愛護植被綠化祖國教案新版新人教版
- 七年級道德與法治上冊第一單元成長的節(jié)拍第二課學習新天地第2框享受學習教案新人教版
- 三年級數學上冊七分數的初步認識一第2課時認識幾分之幾教案蘇教版
- 三年級數學下冊一位置與方向第4課時簡單的路線圖教案新人教版
- 三年級科學下冊第三單元固體和液體4把液體倒進水里去教案蘇教版
- 小學生安全會議課件下載
- 《英文歌曲介紹》課件
- 鞋廠培訓課件
- 網站建設合同范本8篇
- 污水站安全培訓
- 教育機構年度總結和來年規(guī)劃
- 2024年工廠股權轉讓盡職調查報告3篇
- 創(chuàng)意寫作與文學欣賞
- 高空伐樹作業(yè)施工方案
- 新媒體用戶行為研究-洞察分析
- 醫(yī)療器械考試題及答案
- 初三家長會數學老師發(fā)言稿
- 2025版國家開放大學法學本科《知識產權法》期末紙質考試總題庫
- 醫(yī)藥銷售培訓課程
評論
0/150
提交評論