2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江西省贛州市于都二中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知經(jīng)過兩點(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.72.在遞增等比數(shù)列中,為其前n項和.已知,,且,則數(shù)列的公比為()A.3 B.4C.5 D.63.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.4.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.設(shè)O為正方形ABCD的中心,在O,A,B,C,D中任取3點,則取到的3點共線的概率為()A. B.C. D.6.(2017新課標(biāo)全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.7.在數(shù)列中,,則此數(shù)列最大項的值是()A.102 B.C. D.1088.函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點9.已知橢圓的一個焦點坐標(biāo)為,則的值為()A. B.C. D.10.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結(jié)論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負(fù)數(shù),為真命題11.已知正項等比數(shù)列的前項和為,且,則的最小值為()A. B.C. D.12.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在平行六面體中,,若,則___________.14.函數(shù)的單調(diào)遞減區(qū)間是____15.?dāng)?shù)學(xué)中,多數(shù)方程不存在求根公式.因此求精確根非常困難,甚至不可能.從而尋找方程的近似根就顯得特別重要.例如牛頓迭代法就是求方程近似根的重要方法之一,其原理如下:假設(shè)是方程的根,選取作為的初始近似值,在點處作曲線的切線,則與軸交點的橫坐標(biāo)稱為的一次近似值,在點處作曲線的切線.則與軸交點的橫坐標(biāo)稱為的二次近似值.重復(fù)上述過程,用逐步逼近.若給定方程,取,則__________.16.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點A,B的距離之比為常數(shù)的點的軌跡是—個圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長方體中,,點E在棱上,,動點P滿足,若點P在平面內(nèi)運動,則點P對應(yīng)的軌跡的面積是___________;F為的中點,則三棱錐體積的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程18.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點.(1)證明:直線面DEF;(2)求二面角的余弦值.19.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為.若,求的取值范圍20.(12分)設(shè)函數(shù).(1)求在處的切線方程;(2)求的極小值點和極大值點.21.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)22.(10分)為落實國家扶貧攻堅政策,某地區(qū)應(yīng)上級扶貧辦的要求,對本地區(qū)所有貧困戶每年年底進(jìn)行收入統(tǒng)計,下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計數(shù)據(jù):(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標(biāo)系中畫出A貧困戶的人均年純收入關(guān)于年份代碼的散點圖;(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計A貧困戶在年能否脫貧.(注:假定脫貧標(biāo)準(zhǔn)為人均年純收入不低于元)參考公式:,參考數(shù)據(jù):,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點睛】本題主要考查了兩點間斜率的計算公式,屬于基礎(chǔ)題.2、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)可求出、,然后結(jié)合等比數(shù)列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數(shù)列又,,故故選:B3、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【點睛】本題考查橢圓的方程和性質(zhì),考查運算能力,屬于基礎(chǔ)題5、A【解析】列出從5個點選3個點的所有情況,再列出3點共線的情況,用古典概型的概率計算公式運算即可.【詳解】如圖,從5個點中任取3個有共種不同取法,3點共線只有與共2種情況,由古典概型的概率計算公式知,取到3點共線的概率為.故選:A【點晴】本題主要考查古典概型的概率計算問題,采用列舉法,考查學(xué)生數(shù)學(xué)運算能力,是一道容易題.6、A【解析】以線段為直徑的圓的圓心為坐標(biāo)原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.7、D【解析】將將看作一個二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個二次函數(shù),其對稱軸為,開口向下,因為,所以當(dāng)時,取得最大值,故選:D8、A【解析】由導(dǎo)函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A9、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點在軸上,且,故.故選:B.10、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A11、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因為,則,所以,,則,當(dāng)且僅當(dāng)時,等號成立.故選:B.12、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】題中幾何體為平行六面體,就要充分利用幾何體的特征進(jìn)行轉(zhuǎn)化,,再將轉(zhuǎn)化為,以及將轉(zhuǎn)化為,,總之等式右邊為,,,從而得出,.【詳解】解:因為,又,所以,,則.故答案為:2.【點睛】要充分利用幾何體的幾何特征,以及將作為轉(zhuǎn)化的目標(biāo),從而得解.14、【解析】求導(dǎo),根據(jù)可得答案.【詳解】由題意,可得,令,即,解得,即函數(shù)的遞減區(qū)間為.故答案為:.【點睛】本題考查運用導(dǎo)函數(shù)的符號,研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.15、【解析】根據(jù)牛頓迭代法的知識求得.【詳解】構(gòu)造函數(shù),,切線的方程為,與軸交點的橫坐標(biāo)為.,所以切線的方程為,與軸交點的橫坐標(biāo)為.故答案為:16、①.②.【解析】建立空間直角坐標(biāo)系,根據(jù),可得對應(yīng)的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點到平面的距離的最小值即可.【詳解】分別以為軸建系,設(shè),而,,,,.由,有,化簡得對應(yīng)的軌跡方程為.所以點P對應(yīng)的軌跡的面積是.易得的三個邊即是邊長為為的等邊三角形,其面積為,,設(shè)平面的一個法向量為,則有,可取平面的一個法向量為,根據(jù)點的軌跡,可設(shè),,所以點到平面的距離,所以故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)拋物線的方程為,利用拋物線的定義求出點N,代入拋物線方程即可求解.(2)設(shè)直線的方程為,將直線與拋物線方程聯(lián)立,利用韋達(dá)定理以及焦半徑公式可得或,即求.【小問1詳解】拋物線的方程為,設(shè),依題意,由拋物線定義,即.所以,又由,得,解得(舍去),所以拋物線的方程為.【小問2詳解】由(1)得,設(shè)直線的方程為,,,由,得.因為,故所以.由題設(shè)知,解得或,因此直線方程為或.18、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點,為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計算與平面的法向量的數(shù)量積為0即可得證;(2)分別計算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因為平面平面ABCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點,為軸,豎直向上為軸建立如圖所示的空間直角坐標(biāo)系,則,設(shè)為平面的法向量,因為,則有,取,又因為,所以,因為平面,所以平面;【小問2詳解】解:分別設(shè)為平面和平面的法向量,因為,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.19、(1)(2)【解析】(1)利用等比數(shù)列的定義以及等差數(shù)列的性質(zhì),列出方程即可得到答案;(2)先求出的通項,再利用的單調(diào)性即可得到的最小值,從而求得的取值范圍【小問1詳解】依題意,,,所以,設(shè)等差數(shù)列的公差為,則,解得,所以【小問2詳解】,則數(shù)列是遞增數(shù)列,,所以,若,則.20、(1);(2)極大值點,極小值點.【解析】(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的導(dǎo)數(shù)求出切線的斜率,結(jié)合切點坐標(biāo),然后求解切線方程;(2)利用導(dǎo)數(shù)研究f(x)的單調(diào)性,判斷函數(shù)的極值點即可【小問1詳解】函數(shù),函數(shù)的導(dǎo)數(shù)為,,在處的切線方程:,即【小問2詳解】令,,解得,當(dāng)時,可得,即的單調(diào)遞減區(qū)間,或,可得,∴函數(shù)單調(diào)遞增區(qū)間,,的極大值點,極小值點21、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點的橫坐標(biāo);中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論