2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁(yè)
2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁(yè)
2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁(yè)
2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁(yè)
2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆杭州第二中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.2.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.3.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.4.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.5.已知,,,則()A. B. C. D.6.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.37.已知集合,集合,則等于()A. B.C. D.8.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.9.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.10.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.11.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.12.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數(shù)單位),則復(fù)數(shù)________.14.某高校組織學(xué)生辯論賽,六位評(píng)委為選手成績(jī)打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為_(kāi)_____.15.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_(kāi)____.16.已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.18.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對(duì)應(yīng)的變換作用下得到另一曲線,求曲線的方程.19.(12分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.20.(12分)十八大以來(lái),黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國(guó)家對(duì)“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級(jí)財(cái)政提高了對(duì)“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報(bào)銷(xiāo)的比例,其中門(mén)診報(bào)銷(xiāo)比例如下:表1:新農(nóng)合門(mén)診報(bào)銷(xiāo)比例醫(yī)院類(lèi)別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門(mén)診報(bào)銷(xiāo)比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),李村一個(gè)結(jié)算年度門(mén)診就診人次情況如下:表2:李村一個(gè)結(jié)算年度門(mén)診就診情況統(tǒng)計(jì)表醫(yī)院類(lèi)別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個(gè)結(jié)算年度內(nèi)各門(mén)診就診人次占李村總就診人次的比例70%10%15%5%如果一個(gè)結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門(mén)診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個(gè)結(jié)算年度內(nèi)去門(mén)診就診人次為2000人次.(Ⅰ)李村在這個(gè)結(jié)算年度內(nèi)去三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門(mén)診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個(gè)結(jié)算年度內(nèi)門(mén)診就診人次占全村總就診人次的比例視為概率,求李村這個(gè)結(jié)算年度每人次用于門(mén)診實(shí)付費(fèi)用(報(bào)銷(xiāo)后個(gè)人應(yīng)承擔(dān)部分)的分布列與期望.21.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q,過(guò)點(diǎn)Q作不經(jīng)過(guò)點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.22.(10分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.2、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.3、D【解析】

求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)椋詫?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.4、B【解析】

根據(jù)二次函數(shù)圖象的對(duì)稱(chēng)軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱(chēng)軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)?,所以函?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.5、B【解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.6、A【解析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.7、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問(wèn)題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.8、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.9、D【解析】

利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、B【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.11、B【解析】

根據(jù)復(fù)數(shù)的除法法則計(jì)算,由共軛復(fù)數(shù)的概念寫(xiě)出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計(jì)算,共軛復(fù)數(shù)的概念,屬于容易題.12、C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解:故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.14、【解析】

先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個(gè)數(shù)為83,85,87,95,且這四個(gè)數(shù)的平均數(shù),這四個(gè)數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點(diǎn)睛】本題主要考查莖葉圖的識(shí)別和統(tǒng)計(jì)量的計(jì)算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、4【解析】

根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.16、【解析】

作出圖象,求出方程的根,分類(lèi)討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時(shí),令,解得,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;(2)若,則當(dāng)時(shí),方程整理得,則,,此時(shí)各有1解,故當(dāng)時(shí),方程整理得,有1解同時(shí)有2解,即需,,因?yàn)椋?),故此時(shí)滿足題意;或有2解同時(shí)有1解,則需,由(1)可知不成立;或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,或有0解同時(shí)有3解,則,解得,故,(3)若,顯然當(dāng)時(shí),和均無(wú)解,當(dāng)時(shí),和無(wú)解,不符合題意.綜上:的范圍是,故答案為:,【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點(diǎn)P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達(dá)定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點(diǎn)P的直角坐標(biāo)為(x,y),因?yàn)镻的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點(diǎn)P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因?yàn)椤鳎?102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對(duì)應(yīng)的參數(shù),且t1+t2,依題意,點(diǎn)M對(duì)應(yīng)的參數(shù)為,所以|PM|=||.【點(diǎn)睛】本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,屬中檔題.18、【解析】

根據(jù),可解得,設(shè)為曲線任一點(diǎn),在矩陣對(duì)應(yīng)的變換作用下得到點(diǎn),則點(diǎn)在曲線上,根據(jù)變換的定義寫(xiě)出相應(yīng)的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點(diǎn),則,又設(shè)在矩陣A變換作用得到點(diǎn),則,即,所以即代入,得,所以曲線的方程為.【點(diǎn)睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.19、(1)(2)【解析】

(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把點(diǎn)極坐標(biāo)化為直角坐標(biāo),直線的參數(shù)方程是過(guò)定點(diǎn)的標(biāo)準(zhǔn)形式,因此直接把參數(shù)方程代入曲線的方程,利用參數(shù)的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標(biāo)方程為,即(2)點(diǎn)的直角坐標(biāo)為,易知.設(shè)對(duì)應(yīng)參數(shù)分別為將與聯(lián)立得【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線參數(shù)方程,解題時(shí)可利用利用參數(shù)方程的幾何意義求直線上兩點(diǎn)間距離問(wèn)題.20、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】

(Ⅰ)由表2可得去各個(gè)門(mén)診的人次比例可得2000人中各個(gè)門(mén)診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;(Ⅱ)由去各門(mén)診結(jié)算的平均費(fèi)用及表1所報(bào)的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個(gè)結(jié)算年度內(nèi)去門(mén)診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門(mén)診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機(jī)變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【點(diǎn)睛】本題主要考查互斥事件、隨機(jī)事件的概率計(jì)算公式、分布列及其數(shù)學(xué)期望、組合計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.21、(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(Ⅱ)1【解析】

(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);

(Ⅱ)設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論