版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省石家莊市一中、唐山一中等“五個一”名校聯(lián)盟數(shù)學高二上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%2.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.23.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.4.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.5.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.26.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.57.設雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大8.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.9.已知,,點為圓上任意一點,設,則的最大值為()A. B.C. D.10.在四面體中,為的中點,為棱上的點,且,則()A. B.C. D.11.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.12.已知點分別是橢圓的左、右焦點,點P在此橢圓上,,則的面積等于A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線的傾斜角的取值范圍是______.14.不等式的解集是___________.15.如圖,正四棱錐的棱長均為2,點E為側棱PD的中點.若點M,N分別為直線AB,CE上的動點,則MN的最小值為______16.已知命題:,總有.則為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.18.(12分)如圖,矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線在x軸上方的曲線上,求矩形面積最大時的邊長.19.(12分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.20.(12分)在數(shù)列中,,且,(1)求的通項公式;(2)求的前n項和的最大值21.(12分)已知函數(shù).(1)若與在處有相同的切線,求實數(shù)的取值;(2)若時,方程在上有兩個不同的根,求實數(shù)的取值范圍.22.(10分)已知橢圓的焦點為,且該橢圓過點(1)求橢圓的標準方程;(2)若橢圓上的點滿足,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.2、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結合雙曲線方程,∴,可得.故選:A.3、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調遞增;導函數(shù)小于,原函數(shù)單調遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以在單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.4、A【解析】利用空間向量的三角形法則可得,結合平行六面體的性質分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A5、B【解析】直接利用空間向量垂直的坐標運算即可解決.【詳解】∵∴∴,解得,故選:B.6、D【解析】取雙曲線的左焦點,連接,計算可得,即.設,則,,解得:,利用勾股定理計算可得,即可得出結果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設,則,,解得:.,,..故選:D7、C【解析】根據(jù)雙曲線的性質結合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.8、A【解析】分析可知直線不過原點,可設直線的方程為,其中且,利用斜率關系可求得實數(shù)的值,化簡可得直線的方程.【詳解】若直線過原點,則直線在兩坐標軸上的截距相等,不合乎題意,設直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.9、C【解析】根據(jù)題意可設,再根據(jù),求出,再利用三角函數(shù)的性質即可得出答案.【詳解】解:由點為圓上任意一點,可設,則,由,得,所以,則,則,其中,所以當時,取得最大值為22.故選:C.10、A【解析】利用空間向量加法運算,減法運算,數(shù)乘運算即可得到答案.【詳解】如圖故選:A11、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D12、B【解析】根據(jù)橢圓標準方程,可得,結合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡可得,則,故選:B.【點睛】本題考查了橢圓的標準方程及幾何性質的簡單應用,正弦定理與余弦定理的簡單應用,三角形面積公式的用法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關系,即可求出【詳解】可化為:,所以,由于,結合函數(shù)在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關系的應用,以及直線的一般式化斜截式,屬于基礎題14、##【解析】將分式不等式等價轉化為不等式組,求解即得.【詳解】原不等式等價于,解得,故答案為:.15、【解析】根據(jù)題意,先建立空間直角坐標系,然后寫出相關點的坐標,再寫出相關的向量,然后根據(jù)點分別為直線上寫出點的坐標,這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標系,則有:,,,,,可得:設,且則有:,可得:則有:故則當且僅當時,故答案為:16、,使得【解析】全稱命題改否定,首先把全稱量詞改成特稱量詞,然后把后面結論改否定即可.【詳解】解:因為命題,總有,所以的否定為:,使得故答案為,使得【點睛】本題考查了全稱命題的否定,全稱命題(特稱命題)改否定,首先把全稱量詞(特稱量詞)改成特稱量詞(全稱量詞),然后把后面結論改否定即可.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,定點為【解析】(1)利用拋物線的定義求解;(2)設直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫出線段的中垂線方程求解.【小問1詳解】解:由題意得,,解得=2p,因為點M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標準方程為.【小問2詳解】由已知得,直線的斜率存在且不為0,所以設直線的方程為,與拋物線方程聯(lián)立并消去得:,因為直線與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點為,線段的中垂線方程為,所以線段的中垂線過定點.18、當矩形面積最大時,矩形邊AB長,BC長【解析】先設出點坐標,進而表示出矩形的面積,通過求導可求出其最大面積.【詳解】設點,那么矩形面積,.令解得(負舍).所以S在(0,)上單調遞增,在(,2)上單調遞;..所以當時,S有最大值.此時答:當矩形面積最大時,矩形邊AB長,BC長.19、(1)(2)或【解析】(1)根據(jù)垂徑定理,可直接計算出圓的半徑;(2)根據(jù)直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關于斜率的方程即可.【小問1詳解】不妨設圓的半徑為,根據(jù)垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當直線的斜率存在時,不妨設直線的斜率為,點的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或20、(1)(2)40【解析】(1)根據(jù)遞推關系,判定數(shù)列是等差數(shù)列,然后求得首項和公差,進而得到通項公式;(2)令,求得,進而根據(jù)數(shù)列的前項和的意義求得當或5時,有最大值,進而求得和的最大值.【小問1詳解】解:∵數(shù)列滿足,∴,∴是等差數(shù)列,設的公差為d,則,即,解得,∴,∴【小問2詳解】令,得,解得,所以當或5時,有最大值,且最大值為21、(1)(2)【解析】(1)根據(jù)導數(shù)的幾何意義求得函數(shù)在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數(shù)的單調性,最后運用數(shù)形結合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'(x)=1+lnx?f由題意得:;【小問2詳解】當時,,①,①式可化為為,令令,,在上單調遞增,在上單調遞減.,當時,由題意知:22、(1)(2)【解析】(1)利用兩點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險公司銷售工作計劃范文
- 工作總結和下一年工作計劃
- 客服個人工作計劃制定
- 小學六年級班級工作計劃模板
- 關于新學期教師工作計劃集合
- 小班第一學期班務計劃范文
- 2025年護理培訓工作計劃例文
- 高中教師個人工作計劃班主任工作計劃
- 《螺紋的主要參數(shù)》課件
- 《融資服務方案》課件
- 重慶財經(jīng)學院《自然語言處理》2022-2023學年第一學期期末試卷
- 【MOOC】大學生職業(yè)發(fā)展與就業(yè)指導-河南科技大學 中國大學慕課MOOC答案
- 2024年度總結暨表彰大會議程例文(3篇)
- 【MOOC】微型計算機原理與接口技術-南京郵電大學 中國大學慕課MOOC答案
- GB/T 44898-2024基本公共服務均等化評價通則
- 糖尿病傷口護理
- 建筑師業(yè)務實習答辯
- 第07課 開關量的與運算(說課稿)2024-2025學年六年級上冊信息技術人教版
- 中華人民共和國突發(fā)事件應對法培訓課件
- 銅材壓延生產(chǎn)節(jié)能減排關鍵技術研究
- 500字作文標準稿紙A4打印模板-直接打印
評論
0/150
提交評論