河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁(yè)
河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁(yè)
河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁(yè)
河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁(yè)
河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省衡水市第十三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.2.已知在空間直角坐標(biāo)系(O為坐標(biāo)原點(diǎn))中,點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)B,則z軸與平面OAB所成的線面角為()A. B.C. D.3.已知拋物線,則拋物線的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C. D.4.已知、分別是雙曲線的左、右焦點(diǎn),為一條漸近線上的一點(diǎn),且,則的面積為()A. B.C. D.15.已知向量,,則以下說法不正確的是()A. B.C. D.6.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣17.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊(duì)”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.8.在正方體中,為棱的中點(diǎn),為棱的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.9.已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)滿足,則的最小值為()A B.C. D.410.已知圓M的圓心在直線上,且點(diǎn),在M上,則M的方程為()A. B.C. D.11.一條直線過原點(diǎn)和點(diǎn),則這條直線的傾斜角是()A. B.C. D.12.我國(guó)古代銅錢蘊(yùn)含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長(zhǎng)為,若在圓內(nèi)隨即取點(diǎn),取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線的方向向量為,平面的一個(gè)法向量為,則直線與平面所成角的正弦值為______.14.函數(shù)在處的切線方程為_________15.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.16.曲線在點(diǎn)M(π,0)處的切線方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知命題p:;命題q:,若“”為真命題,求x的取值范圍(2)設(shè)命題p:;命題q:,若是的充分不必要條件,求實(shí)數(shù)a的取值范圍18.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長(zhǎng)為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說明理由19.(12分)已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5(1)求C方程;(2)過F作直線l,交C于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程20.(12分)已知橢圓C對(duì)稱中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且,兩點(diǎn)(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負(fù)半軸、y軸負(fù)半軸的交點(diǎn),P為橢圓上在第一象限內(nèi)一點(diǎn),直線PM與y軸交于點(diǎn)S,直線PN與x軸交于點(diǎn)T,求證:四邊形MSTN的面積為定值21.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求22.(10分)已知等差數(shù)列的公差,前3項(xiàng)和,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時(shí),要注意利用平面幾何圓的知識(shí)來分析解答.2、B【解析】根據(jù)點(diǎn)關(guān)于坐標(biāo)軸對(duì)稱的性質(zhì),結(jié)合空間向量夾角公式進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為,所以,設(shè)平面OAB的一個(gè)法向量為,則得所以,令,得,所以又z軸的一個(gè)方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B3、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.故選:D.4、A【解析】先表示出漸近線方程,設(shè)出點(diǎn)坐標(biāo),利用,解出點(diǎn)坐標(biāo),再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設(shè)在上,設(shè),由得,解得,的面積為.故選:A.5、C【解析】可根據(jù)已知的和的坐標(biāo),通過計(jì)算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因?yàn)橄蛄?,,所以,故,所以選項(xiàng)A正確;,,所以,故選項(xiàng)B正確;,所以,故選項(xiàng)C錯(cuò)誤;,所以,,故,所以選項(xiàng)D正確.故選:C.6、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時(shí)取最小值故選:C7、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點(diǎn)睛】此題考查條件概率問題,屬于基礎(chǔ)題8、D【解析】建立空間直角坐標(biāo)系,計(jì)算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長(zhǎng)為2,連接,以為坐標(biāo)原點(diǎn)如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個(gè)法向量,故直線與平面所成角正弦值為.故選:D9、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,有最小值為,即,所以故選:B10、C【解析】由題設(shè)寫出的中垂線,求其與的交點(diǎn)即得圓心坐標(biāo),再應(yīng)用兩點(diǎn)距離公式求半徑,即可得圓的方程.【詳解】因?yàn)辄c(diǎn),在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C11、C【解析】求出直線的斜率,結(jié)合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設(shè)這條件直線的傾斜角為,則,,因此,.故選:C.12、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:14、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,結(jié)合直線的點(diǎn)斜式方程,即可求解.【詳解】由題意,函數(shù),可得,則且,所以函數(shù)在處的切線方程為,即,即切線方程為.故答案為:.15、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:16、【解析】由題意可得,據(jù)此可得切線的斜率,結(jié)合切點(diǎn)坐標(biāo)即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點(diǎn)坐標(biāo)為,故切線方程為:.【點(diǎn)睛】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問題一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號(hào),防止與乘法公式混淆二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn)三是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導(dǎo),其導(dǎo)數(shù)為兩層導(dǎo)數(shù)之積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】根據(jù)復(fù)合命題的真值表知:p真q假;非q是非p的充分不必要條件,等價(jià)于p是q的充分不必要條件,等價(jià)于p是q的真子集【詳解】命題p:,即;命題,即;由于“”為真命題,則p真q假,從而由q假得,,所以x的取值范圍是命題p:,即命題q:,即由于是的充分不必要條件,則p是q的充分不必要條件即有,【點(diǎn)睛】本題考查了復(fù)合命題及其真假屬基礎(chǔ)題18、(1)證明見解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問1詳解】因?yàn)辄c(diǎn)S在底面ABCD上的射影為O,所以平面ABCD,因?yàn)樗倪呅蜛BCD是邊長(zhǎng)為的正方形,所以,又因?yàn)榈拿娣e為1,所以,,所以,因?yàn)椋c(diǎn)P為SD的中點(diǎn),所以,同理可得,因?yàn)?,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則,,,,假設(shè)在棱SD上存在點(diǎn)P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個(gè)法向量為,則,因?yàn)?,,所以,令,得,,因?yàn)槠矫鍭CD的一個(gè)法向量為,所以,化簡(jiǎn)得,解得或(舍),所以存在P點(diǎn)符合題意,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)19、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點(diǎn)公式有,進(jìn)而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點(diǎn)的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點(diǎn)坐標(biāo)值,應(yīng)用韋達(dá)定理、中點(diǎn)公式求直線斜率,并寫出直線方程.20、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標(biāo),再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點(diǎn)坐標(biāo)滿足,即,直線PM:,可得,直線PN:,可得,.21、(1)(2)9【解析】(1)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論