版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湛江市重點中學(xué)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.2.直線被圓截得的弦長為()A.1 B.C.2 D.33.在平面直角坐標系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.4.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.5.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.36.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.7.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:廣告費用(萬元)4235銷售額(萬元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元8.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.9.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項10.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.11.數(shù)列滿足,對任意,都有,則()A. B.C. D.12.已知直線與拋物線C:相交于A,B兩點,O為坐標原點,,的斜率分別為,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在四面體ABCD中,,,則______14.若,則___15.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達到5千億元,預(yù)計該年進口總額為______千億元16.已知橢圓,分別是橢圓的上、下頂點,是左頂點,為左焦點,直線與相交于點,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在實驗室中,研究某種動物是否患有某種傳染疾病,需要對其血液進行檢驗.現(xiàn)有份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需要檢驗n次;二是混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,如果檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這k份究竟哪些為陽性,就需要對它們再次取樣逐份檢驗,那么這k份血液的檢驗次數(shù)共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的.且每份樣本是陽性結(jié)果的概率為(1)假設(shè)有5份血液樣本,其中只有2份血液樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢測出來的概率;(2)假設(shè)有4份血液樣本,現(xiàn)有以下兩種方案:方案一:4個樣本混合在一起檢驗;方案二:4個樣本平均分為兩組,分別混合在一起檢驗若檢驗次數(shù)的期望值越小,則方案越優(yōu)現(xiàn)將該4份血液樣本進行檢驗,試比較以上兩個方案中哪個更優(yōu)?18.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值19.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為Sn,且成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.20.(12分)已知集合,設(shè)(1)若p是q的充分不必要條件,求實數(shù)a的取值范圍;(2)若?q是?p的必要不充分條件,求實數(shù)a的取值范圍21.(12分)解答下列兩個小題:(1)雙曲線:離心率為,且點在雙曲線上,求的方程;(2)雙曲線實軸長為2,且雙曲線與橢圓的焦點相同,求雙曲線的標準方程22.(10分)已知函數(shù)(1)當時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設(shè),因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.2、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.3、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長,結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B4、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.5、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B6、C【解析】連結(jié),設(shè),則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關(guān)鍵是求解基本量,,.7、B【解析】,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5考點:線性回歸方程8、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A9、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設(shè)數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C10、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題11、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于常考題.12、C【解析】設(shè),,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:2414、##0.5【解析】導(dǎo)數(shù)的定義公式的變形應(yīng)用,要求分子分母的變化量相同.【詳解】故答案為:.15、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預(yù)計該年進口總額為千億元.故答案為:1.6;3.6516、##【解析】先求出頂點和焦點坐標,求出直線直線與的斜率,利用到角公式求出的正切值,進而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)方案一更優(yōu)【解析】(1)分兩類,由古典概型可得;(2)分別求出兩種方案的數(shù)學(xué)期望,然后比較可知.【小問1詳解】恰好經(jīng)過3次檢驗就能把陽性樣本全部檢測出來分為兩種情況:第一種:前兩次檢測中出現(xiàn)一次陽性一次陰性且第三次為陽性第二種:前三次檢測均陰性,所以概率為【小問2詳解】方案一:混在一起檢驗,記檢驗次數(shù)為X,則X的取值范圍是,,,方案二:每組的兩個樣本混合在一起檢驗,若結(jié)果呈陰性,則檢驗次數(shù)為1,其概率為,若結(jié)果呈陽性,則檢驗次數(shù)為3,其概率為設(shè)檢驗次數(shù)為隨機變量Y,則Y的取值范圍是,,,,,所以,方案一更優(yōu)18、(1)證明見解析(2)【解析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,則,∴,設(shè)平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.19、(1),(2)【解析】(1)由題意可得,從而可求出,進而可求得的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求得結(jié)果【詳解】(1)因為數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列,所以即,解得,所以;(2)由(1)得,所以.20、(1)(2)【解析】(1)先解出集合A、B,然后根據(jù)p是q的充分不必要條件列出不等式組求解.(2)?q是?p的必要不充分條件可知q是p的充分不必要條件,然后求解.【小問1詳解】解:由題意得:,p是q的充分不必要條件,所以集合A是集合B的真子集∴,即,所以實數(shù)a的取值范圍.【小問2詳解】?q是?p的必要不充分條件p是q的必要不充分條件,即q是p的充分不必要條件集合B是集合A的真子集∴,故實數(shù)a的取值范圍為21、(1);(2).【解析】(1)由可得,再將點代入方程,聯(lián)立解出答案,可得答案.(2)先求出橢圓的焦點,則雙曲線的焦點在軸上,由條件可得,且,從而得出答案.詳解】(1)由,得,即,又,即,雙曲線的方程即為,點坐標代入得,解得所以,雙曲線的方程為(2)橢圓的焦點為,設(shè)雙曲線的方程為,所以,且,所以,所以,雙曲線的方程為22、(1);(2)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版高樓外墻裝飾施工協(xié)議版B版
- 2024年新版建筑工程預(yù)算定額合同
- 2024年樣品機器試用協(xié)議模板一
- 2024年標準型攪拌機銷售協(xié)議范本版B版
- 2024年小學(xué)二年級數(shù)學(xué)(北京版)-總復(fù)習(xí):綜合練習(xí)-1教案
- 2018房地產(chǎn)經(jīng)紀人考試《業(yè)務(wù)操作》試題
- 2024年度基礎(chǔ)設(shè)施建設(shè)投資借款協(xié)議范本3篇
- 2025年衢州貨運從業(yè)資格證模擬考試題庫下載
- 2025年滄州考貨運上崗證試答題
- 單位人事管理制度展示合集
- 影視鑒賞-第六章-影視藝術(shù)的鑒賞與評論
- 全科醫(yī)師師資培訓(xùn)課件
- 優(yōu)化營商環(huán)境重點知識講座
- 城市營銷方案書
- 雙閉環(huán)直流調(diào)速系統(tǒng)-
- 中國老年教育發(fā)展的背景和歷史回顧
- 人工智能原理與方法智慧樹知到課后章節(jié)答案2023年下哈爾濱工程大學(xué)
- 分布式光伏電站項目施工方案
- 2024屆廣東省廣州市華南師范大附屬中學(xué)數(shù)學(xué)七年級第一學(xué)期期末綜合測試試題含解析
- PPP模式項目的風(fēng)險管理分析
- 硫酸安全技術(shù)說明書-MSDS
評論
0/150
提交評論