版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省百校聯(lián)盟2025屆高一上數(shù)學期末質量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若關于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)2.計算:()A.0 B.1C.2 D.33.已知,則的值為()A.-4 B.4C.-8 D.84.如下圖是一個正方體的平面展開圖,在這個正方體中①②與成角③與為異面直線④以上四個命題中,正確的序號是A.①②③ B.②④C.③④ D.②③④5.在正方體中,異面直線與所成的角為()A.30° B.45°C.60° D.90°6.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折成一個直二面角B-AC-D,則四面體ABCD的外接球的體積是()A.12512πC.1256π7.如下圖所示,在正方體中,下列結論正確的是A.直線與直線所成的角是 B.直線與平面所成的角是C.二面角的大小是 D.直線與平面所成的角是8.函數(shù)f(x)=|x3|?ln的圖象大致為()A. B.C. D.9.已知關于的方程的兩個實根為滿足則實數(shù)的取值范圍為A. B.C. D.10.若,,若,則a的取值集合為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.16、17世紀之交,隨著天文、航海、工程、貿(mào)易以及軍事的發(fā)展,改進數(shù)字計算方法成了當務之急,數(shù)學家納皮爾在研究天文學的過程中,為簡化計算發(fā)明了對數(shù).直到18世紀,才由瑞士數(shù)學家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關系,即.現(xiàn)在已知,則__________12.已知函數(shù)則的值等于____________.13.___________,__________14.定義域為R,值域為-∞,115.已知函數(shù)是奇函數(shù),當時,,若,則m的值為______.16.已知圓心為,且被直線截得的弦長為,則圓的方程為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在①是函數(shù)圖象的一條對稱軸,②函數(shù)的最大值為2,③函數(shù)圖象與y軸交點的縱坐標是1這三個條件中選取兩個補充在下面題目中,并解答已知函數(shù),______(1)求的解析式;(2)求在上的值域18.已知集合,其中,集合若,求;若,求實數(shù)的取值范圍19.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱函數(shù)為“局部中心函數(shù)”.(1)已知二次函數(shù),試判斷是否為“局部中心函數(shù)”.并說明理由;(2)若是定義域為R上的“局部中心函數(shù)”,求實數(shù)m的取值范圍.20.已知(1)求的值(2)求的值.(結果保留根號)21.已知函數(shù).(1)求函數(shù)的定義域;(2)設,若函數(shù)在上有且僅有一個零點,求實數(shù)的取值范圍;(3)設,是否存在正實數(shù),使得函數(shù)在內(nèi)的最大值為4?若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意可得:函數(shù)y=log12x∴∴∴實數(shù)m的取值范圍是(0故選A點睛:本小題考查的是學生對函數(shù)最值的應用的知識點的掌握.本題在解答時應該先將函數(shù)y=log12x在區(qū)間(0,2、B【解析】根據(jù)指數(shù)對數(shù)恒等式及對數(shù)的運算法則計算可得;【詳解】解:;故選:B3、C【解析】由已知條件,結合同角正余弦的三角關系可得,再將目標式由切化弦即可求值.【詳解】由題意知:,即,∴,而.故選:C.【點睛】本題考查了同角三角函數(shù)關系,應用了以及切弦互化求值,屬于基礎題.4、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:由正方體的幾何特征可得:①不平行,不正確;
②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;④易證,故,正確;故選D5、C【解析】首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構造三角形或平行四邊形是關鍵,考查了空間想象能力和推理能力,屬于中檔題.6、C【解析】由矩形的對角線互相平分且相等即球心到四個頂點的距離相等推出球心為AC的中點,即可求出球的半徑,代入體積公式即可得解.【詳解】因為矩形對角線互相平分且相等,根據(jù)外接球性質易知外接球球心到四個頂點的距離相等,所以球心在對角線AC上,且球的半徑為AC長度的一半,即r=12AC=故選:C【點睛】本題考查球與幾何體的切、接問題,二面角的概念,屬于基礎題.7、D【解析】選項,連接,,因為,所以直線與直線所成的角為,故錯;選項,因為平面,故為直線與平面所成的角,根據(jù)題意;選項,因為平面,所以,故二面角的平面角為,故錯;用排除法,選故選:D8、A【解析】判斷函數(shù)的奇偶性和對稱性,利用特殊點的函數(shù)值是否對應進行排除即可【詳解】f(-x)=|x3|?ln=-|x3|?ln=-f(x),則函數(shù)f(x)是奇函數(shù),圖象關于原點對稱,排除B,D,f()=ln=ln<0,排除C,故選A【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)奇偶性和特殊值進行排除是解決本題的關鍵9、D【解析】利用二次方程實根分布列式可解得.【詳解】設,根據(jù)二次方程實根分布可列式:,即,即,解得:.故選D.【點睛】本題考查了二次方程實根的分布.屬基礎題.10、B【解析】或,分類求解,根據(jù)可求得的取值集合【詳解】或,,,或或,解得或,綜上,故選:二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】由將對數(shù)轉化為指數(shù)12、18【解析】根據(jù)分段函數(shù)定義計算【詳解】故答案為:1813、①.##-0.5②.2【解析】根據(jù)誘導公式計算即可求出;根據(jù)對數(shù)運算性質可得【詳解】由題意知,;故答案為:14、fx【解析】利用基本初等函數(shù)的性質可知滿足要求的函數(shù)可以是fx=1-a【詳解】因為fx=2x的定義域為所以fx=-2x的定義域為則fx=1-2x的定義域為所以定義域為R,值域為-∞,1的一個減函數(shù)是故答案為:fx15、【解析】由奇函數(shù)可得,則可得,解出即可【詳解】因為是奇函數(shù),,所以,即,解得故答案為:【點睛】本題考查利用奇偶性求值,考查已知函數(shù)值求參數(shù)16、【解析】由題意可得弦心距d=,故半徑r=5,故圓C的方程為x2+(y+2)2=25,故答案為x2+(y+2)2=25三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,;(2).【解析】(1)選擇①②直接求出A及的解;選擇①③,先求出,再由求A作答;選擇②③,直接可得A,再由求作答.(2)由(1)結合正弦函數(shù)的性質即可求得在上的值域.【小問1詳解】選擇①②,,由及得:,所以的解析式是:.選擇①③,由及得:,即,而,則,即,解得,所以的解析式是:.選擇②③,,而,即,又,則有,所以的解析式是:.【小問2詳解】由(1)知,,當時,,則當,即時,,當,即時,,所以函數(shù)在上的值域是.18、(1);【解析】解出二次不等式以及分式不等式得到集合和,根據(jù)并集的定義求并集;由集合是集合的子集,可得,根據(jù)包含關系列出不等式,求出的取值范圍.【詳解】集合,由,則,解得,即,,則,則,即,可得,解得,故m的取值范圍是【點睛】本題考查集合的交并運算,以及由集合的包含關系求參數(shù)問題,屬于基礎題.在解有關集合的題的過程中,要注意在求補集與交集時要考慮端點是否可以取到,這是一個易錯點,同時將不等式與集合融合,體現(xiàn)了知識點之間的交匯.19、(1)函數(shù)為“局部中心函數(shù)”,理由見解析;(2).【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉化為方程有解,再利用整體思路得出結果.【詳解】解:(1)由題意,(),所以,,當時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉化為在上有解,設函數(shù),當時,在上有解,即,解得:;當時,則需要滿足才能使在上有解,解得:,綜上:,即實數(shù)m的取值范圍.20、(1);(2).【解析】(1)利用二倍角公式化簡得,然后利用同角關系式即得;(2)利用兩角差的正弦公式即求.【小問1詳解】由,得,∵,,∴,∴,∴.【小問2詳解】由(1)知,∴.21、(1);(2);(3)存在,.【解析】(1)根據(jù)對數(shù)函數(shù)的定義域列不等式求解即可.(2)由函數(shù)的單調(diào)性和零點存在定理,列不等式求解即可.(3)由對勾函數(shù)的性質可得函數(shù)的單調(diào)區(qū)間,利用分類討論的思想討論定義域與單調(diào)區(qū)間的關系,再利用函數(shù)的最值存在性問題求出實數(shù)的值.【詳解】(1)由題意,函數(shù)有意義,則滿足,解得,即函數(shù)的定義域為.(2)由,且,可得,且為單調(diào)遞增連續(xù)函數(shù),又函數(shù)在上有且僅有一個零點,所以,即,解得,所以實數(shù)的取值范圍是.(3)由,設,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 敞篷艇相關行業(yè)投資規(guī)劃報告范本
- 解決問題能力培訓
- 建筑模型制作承攬合同三篇
- 《高績效管理培訓》課件
- 《教育目的教育學》課件
- 讀書實踐報告范文
- 消防體驗報告范文
- 《電工電子技術》課件-第13章
- 《教學管理學業(yè)評價》課件
- 《教學資源色彩學》課件
- 深化設計確認記錄
- 小學生心理健康教育課件
- 熱力管道焊接技術交底記錄大全
- 各級醫(yī)院健康體檢中心基本標準(2019年版)
- XX鎮(zhèn)2022年度農(nóng)產(chǎn)品綜合服務中心項目實施方案范本
- 早產(chǎn)兒保健管理
- 評標專家及評標員管理辦法
- aecopd護理查房課件
- TCECS 720-2020 鋼板樁支護技術規(guī)程
- 中考作文備考:“此時無聲勝有聲”(附寫作指導與佳作示例)
- 擋墻施工危險源辨識及風險評價
評論
0/150
提交評論