版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建廈門灌口中學數(shù)學高二上期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓上的任意一點,過點作圓:的切線,設(shè)其中一個切點為,則的取值范圍為()A. B.C. D.2.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.3.已知命題P:,,則命題P的否定為()A., B.,C., D.,4.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.5.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點為,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.6.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.27.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.8.命題:“,”的否定形式為()A., B.,C., D.,9.在等比數(shù)列中,,則等于()A. B.C. D.10.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.11.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.12.在拋物線上,橫坐標為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數(shù)k的取值范圍是___________.14.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______15.已知函數(shù),是的導函數(shù),則______16.一個物體的運動方程為其中位移的單位是米,時間的單位是秒,那么物體在秒末的瞬時速度是__________米/秒三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,數(shù)列的前n項和為滿足.(1)證明:數(shù)列為等比數(shù)列;(2)在和中插入k個數(shù)構(gòu)成一個新數(shù)列:,2,,4,6,,8,10,12,,…,其中插入的所有數(shù)依次構(gòu)成首項和公差都為2的等差數(shù)列.求數(shù)列的前50項和.18.(12分)已知數(shù)列{an}的首項a1=1,且an+1=(n∈N*).(1)證明:數(shù)列是等比數(shù)列;(2)設(shè)bn=-,求數(shù)列{bn}的前n項和Sn.19.(12分)已知拋物線C:經(jīng)過點.(1)求拋物線C的方程及其準線方程;(2)經(jīng)過拋物線C的焦點F的直線l與拋物線交于兩點M,N,且與拋物線的準線交于點Q.若,求直線l的方程.20.(12分)已知命題p:點在橢圓內(nèi);命題q:函數(shù)在R上單調(diào)遞增(1)若p為真命題,求m的取值范圍;(2)若為假命題,求實數(shù)m的取值范圍21.(12分)已知,,且,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B2、C【解析】設(shè),用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C3、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B4、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設(shè)為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D5、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項.【詳解】由題意可設(shè)右焦點為,因為,且圓:,所以點在以焦距為直徑的圓上,則,設(shè)的中點為點,則為的中位線,所以,則,又點在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點睛】方法點睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點三角形,要注意雙曲線定義的應用,運用整體代換的方法可以減少計算量6、A【解析】根據(jù)雙曲線方程形式確定焦點位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A7、D【解析】經(jīng)判斷點在圓內(nèi),與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內(nèi),連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D8、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.9、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質(zhì),重在計算,當,在等差數(shù)列中有,在等比數(shù)列中,靈活應用,屬基礎(chǔ)題.10、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關(guān)系時,往往結(jié)合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.11、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.12、B【解析】由方程可得拋物線的焦點和準線,進而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標,,準線方程,由拋物線的定義可得拋物線上橫坐標為4的點到準線的距離等于5,即,解之可得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、①..②..【解析】以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)空間向量的線性運算求得向量的坐標,由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系(如下圖所示)由題意可知,,,因為,,所以,故設(shè)平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.15、2【解析】根據(jù)基本初等函數(shù)的導數(shù)公式及導數(shù)的加法法則,對求導,再求即可.【詳解】由題設(shè),,所以.故答案為:16、5【解析】,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)2735.【解析】(1)利用給定的遞推公式結(jié)合“當時,”計算推理作答.(2)插入所有項構(gòu)成數(shù)列,,再確定數(shù)列的前50項中含有數(shù)列和的項數(shù)計算作答.【小問1詳解】依題意,,當時,,兩式相減得:,則有,而,即,所以數(shù)列是以2為首項,2為公式的等比數(shù)列.【小問2詳解】由(1)知,,即,插入的所有項構(gòu)成數(shù)列,,數(shù)列中前插入數(shù)列的項數(shù)為:,而前插入數(shù)列的項數(shù)為45,因此,數(shù)列的前50項中包含數(shù)列前9項,數(shù)列前41項,所以.18、(1)證明見解析.(2)2-.【解析】(1)根據(jù)遞推公式,得到,推出,即可證明數(shù)列是等比數(shù)列;(2)先由(1)求出,即bn=,再錯位相減法,即可求出數(shù)列的和.【小問1詳解】(1)證明:因為an+1=,所以==+,所以-=-=,又a1-≠0,所以數(shù)列為以-=為首項,為公比的等比數(shù)列.【小問2詳解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.19、(1)拋物線C的方程為,準線方程為(2)或.【解析】(1)將點代入拋物線求出即可得出拋物線方程和準線方程;(2)設(shè)出直線方程,與拋物線聯(lián)立,表示出弦長和即可求出.【小問1詳解】將代入可得,解得,所以拋物線C的方程為,準線方程為;【小問2詳解】由題得,設(shè)直線方程為,,設(shè),聯(lián)立方程,可得,則,所以,因為直線與準線交于點Q,則,則,因為,所以,解得,所以直線l的方程為或.20、(1)(2)【解析】(1)根據(jù)題意列不等式組求解(2)判斷的真假性后分別求解【小問1詳解】由題意得,解得且故m的取值范圍是【小問2詳解】∵為假命題,∴p和q都是真命題,對于命題q,由題意得:恒成立,∴,∴,∴,解得故m的取值范圍是21、.【解析】求得集合,根據(jù),分和,兩種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航運行業(yè)保安工作總結(jié)
- 北京市安全管理工作總結(jié)
- 銀行工作總結(jié)團結(jié)合作追求卓越
- 2023-2024學年北京市101中學高一(下)期中語文試卷
- 家具行業(yè)招聘成功案例
- 娛樂設(shè)施行業(yè)推廣計劃總結(jié)
- 醫(yī)療話務(wù)員工作總結(jié)
- 醫(yī)學美容診所前臺工作總結(jié)
- 2024年認識安全標志的教案
- 涼亭制定安裝協(xié)議書(2篇)
- 2024-2030年中國紀錄片行業(yè)前景動態(tài)及發(fā)展趨勢預測報告
- 小學數(shù)學教師培訓完整方案
- 山東省濟南市2023-2024學年高一年級上冊1月期末考試物理試題(含解析)
- 2024年吉林省高職高專單獨招生考試數(shù)學試卷真題(含答案)
- DGTJ08-9-2023 建筑抗震設(shè)計標準
- 《幼兒園入學準備教育指導要點》
- 2024年防災科技學院漢語言文學專業(yè)《現(xiàn)代漢語》期末試卷A(有答案)
- 2024-2030年中國釬焊板式換熱器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 駕駛證吊銷附議申請書
- 水務(wù)集團定崗定員方案范文
- 2023-2024學年河北省高二上學期期末考試生物試題(解析版)
評論
0/150
提交評論