![榆林市重點中學2024年九上數(shù)學開學達標檢測試題【含答案】_第1頁](http://file4.renrendoc.com/view14/M09/34/01/wKhkGWciwkCATdy5AAGu2iaN774414.jpg)
![榆林市重點中學2024年九上數(shù)學開學達標檢測試題【含答案】_第2頁](http://file4.renrendoc.com/view14/M09/34/01/wKhkGWciwkCATdy5AAGu2iaN7744142.jpg)
![榆林市重點中學2024年九上數(shù)學開學達標檢測試題【含答案】_第3頁](http://file4.renrendoc.com/view14/M09/34/01/wKhkGWciwkCATdy5AAGu2iaN7744143.jpg)
![榆林市重點中學2024年九上數(shù)學開學達標檢測試題【含答案】_第4頁](http://file4.renrendoc.com/view14/M09/34/01/wKhkGWciwkCATdy5AAGu2iaN7744144.jpg)
![榆林市重點中學2024年九上數(shù)學開學達標檢測試題【含答案】_第5頁](http://file4.renrendoc.com/view14/M09/34/01/wKhkGWciwkCATdy5AAGu2iaN7744145.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁榆林市重點中學2024年九上數(shù)學開學達標檢測試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如果點P(x-4,x+3)在平面直角坐標系的第二象限內,那么x的取值范圍在數(shù)軸上可表示為()A. B.C. D.2、(4分)代數(shù)式在實數(shù)范圍內有意義,實數(shù)取值范圍是()A. B. C. D.3、(4分)已知等腰△ABC的兩邊長分別為2和3,則等腰△ABC的周長為()A.7 B.8 C.6或8 D.7或84、(4分)在20km的環(huán)湖越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如右上圖所示,根據(jù)圖中提供的信息,下列說法中錯誤的有()①出發(fā)后1小時,兩人行程均為10km;②出發(fā)后1.5小時,甲的行程比乙多2km;③兩人相遇前,甲的速度小于乙的速度;④甲比乙先到達終點.A.1個 B.2個 C.3個 D.4個5、(4分)如果實數(shù)滿足且不等式的解集是,那么函數(shù)的圖象只可能是()A. B. C. D.6、(4分)如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx的解集為()A.x>2 B.x<2 C.x>-4 D.x<-47、(4分)如圖,將周長為10的△ABC沿BC方向平移1個單位得到△DEF,則四邊形ABFD的周長為()A.8 B.10 C.12 D.148、(4分)點P是△ABC內一點,且P到△ABC的三邊距離相等,則P是△ABC哪三條線的交點()A.邊的垂直平分線 B.角平分線C.高線 D.中位線二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,已知?ABCD中,AB=4,BC=6,BC邊上的高AE=2,則?ABCD的面積是______,DC邊上的高AF的長是______.10、(4分)參加一次同學聚會,每兩人都握一次手,所有人共握了45次,若設共有x人參加同學聚會.列方程得____.11、(4分)若方程的兩根互為相反數(shù),則________.12、(4分)如圖所示,△ABC為等邊三角形,D為AB的中點,高AH=10cm,P為AH上一動點,則PD+PB的最小值為_______cm.13、(4分)我市某一周每天的最低氣溫統(tǒng)計如下(單位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,則這組數(shù)據(jù)的眾數(shù)為__________.三、解答題(本大題共5個小題,共48分)14、(12分)某學校計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一種型號的電腦報價均為6000元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下表所示:商場優(yōu)惠條件甲商場第一臺按原價收費,其余的每臺優(yōu)惠25%乙商場每臺優(yōu)惠20%(1)設學校購買臺電腦,選擇甲商場時,所需費用為元,選擇乙商場時,所需費用為元,請分別求出,與之間的關系式.(2)什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?(3)現(xiàn)在因為急需,計劃從甲乙兩商場一共買入10臺電腦,已知甲商場的運費為每臺50元,乙商場的運費為每臺60元,設總運費為元,從甲商場購買臺電腦,在甲商場的庫存只有4臺的情況下,怎樣購買,總運費最少?最少運費是多少?15、(8分)如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.求證:(1)BC=AD;(2)△OAB是等腰三角形.16、(8分)隨著我國經濟社會的發(fā)展,人民對于美好生活的追求越來越高,外出旅游已成為時尚.某社區(qū)為了了解家庭旅游消費情況,隨機抽取部分家庭,對每戶家庭的年旅游消費金額進行問卷調査,根據(jù)調查結果繪制成兩幅不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:組別家庭年旅游消費金額x(元)戶數(shù)Ax≤400027B4000<x≤8000aC8000<x≤1200024D12000<x≤1600014Ex>160006(1)本次被調査的家庭有戶,表中a=;(2)本次調查數(shù)據(jù)的中位數(shù)出現(xiàn)在組.扇形統(tǒng)計圖中,E組所在扇形的圓心角是度;(3)若這個社區(qū)有2700戶家庭,請你估計家庭年旅游消費8000元以上的家庭有多少戶?17、(10分)先化簡,再求值:÷(a-1+),其中a=.18、(10分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.(1)求證:△ADE≌△CBF;(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,E為正方形ABCD對角線BD上一點,且BE=BC,則∠DCE=_____.20、(4分)如圖,一棵大樹在離地面4米高的處折斷,樹頂落在離樹底端的5米遠處,則大樹折斷前的高度是______米(結果保留根號).21、(4分)矩形的長和寬是關于的方程的兩個實數(shù)根,則此矩形的對角線之和是________.22、(4分)如圖,在中,,為的中線,過點作于點,過點作的平行線,交的延長線于點,在的延長線上截取,連接、.若,,則________.23、(4分)如圖,正方形ABCD中,AE=AB,直線DE交BC于點F,則∠BEF=_____度.二、解答題(本大題共3個小題,共30分)24、(8分)在△ABC中,AB=AC,∠BAC=36°,將△ABC繞點A按逆時針旋轉角度ɑ(0°<ɑ<180°)得到△ADE,連接CE、BD,BD與CE相交于點F。(1)求證:BD=CE(2)當ɑ等于多少度時,四邊形AFDE是平行四邊形?并說明理由。25、(10分)如圖1,點是正方形邊上任意一點,以為邊作正方形,連接,點是線段中點,射線與交于點,連接.(1)請直接寫出和的數(shù)量關系和位置關系.(2)把圖1中的正方形繞點順時針旋轉,此時點恰好落在線段上,如圖2,其他條件不變,(1)中的結論是否成立,請說明理由.(3)把圖1中的正方形繞點順時針旋轉,此時點、恰好分別落在線段、上,連接,如圖3,其他條件不變,若,,直接寫出的長度.26、(12分)如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動點M從A點出發(fā),以每秒1個單位的速度沿著A→C→D的路線向D點勻速運動(M不與A、D重合);過點M作直線l⊥AD,l與路線A→B→D相交于N,設運動時間為t秒:(1)填空:當點M在AC上時,BN=(用含t的代數(shù)式表示);(2)當點M在CD上時(含點C),是否存在點M,使△DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由;(3)過點N作NF⊥ED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
根據(jù)點的位置得出不等式組,求出不等式組的解集,即可得出選項.【詳解】解:∵點P(x-4,x+3)在平面直角坐標系的第二象限內,∴,解得:-3<x<4,在數(shù)軸上表示為:,故選C.本題考查了解一元一次不等式組、在數(shù)軸上表示不等式組的解集和點的坐標等知識點,能求出不等式組的解集是解此題的關鍵.2、A【解析】
根據(jù)分數(shù)有意義的條件和二次根式有意義的條件,得出不等式,求解即可.【詳解】由題意得,解得x>2,故選:A.本題考查了分數(shù)有意義的條件和二次根式有意義的條件,掌握知識點是解題關鍵.3、D【解析】
因為等腰三角形的兩邊分別為2和3,但沒有明確哪是底邊,哪是腰,所以有兩種情況,需要分類討論.【詳解】當2為底時,三角形的三邊為3,2、3可以構成三角形,周長為8;當3為底時,三角形的三邊為3,2、2可以構成三角形,周長為1.故選D.本題考查了等腰三角形的性質;對于底和腰不等的等腰三角形,若條件中沒有明確哪邊是底哪邊是腰時,應在符合三角形三邊關系的前提下分類討論.4、B【解析】
根據(jù)圖像所給信息,結合函數(shù)圖像的實際意義判斷即可.【詳解】解:由圖像可得出發(fā)后1小時,兩人行程均為10km,①正確;甲的速度始終為,乙在內,速度為,在內,速度為,所以出發(fā)后1.5小時,甲的行程為,而乙的行程為,,所以出發(fā)后1.5小時,甲的行程比乙多3km,②錯誤;相遇前,在內,乙的速度大于甲的速度,在內,乙的速度小于甲的速度,③錯誤;由圖像知,甲2小時后到達終點,而乙到達終點花費的時間比甲的長,所以甲比乙先到達終點,④正確.錯誤的說法有2個.故答案為:B本題是根據(jù)函數(shù)圖像獲取信息,明確函數(shù)圖像所表達的實際意義是解題的關鍵.5、A【解析】
先根據(jù)不等式kx<b的解集是判斷出k、b的符號,再根據(jù)一次函數(shù)圖象的性質即可解答.【詳解】∵不等式kx<b的解集是,∴k<0,∵kb<0,∴b>0,∴函數(shù)y=kx+b的圖象過一、二、四象限.故選:A.一次函數(shù)y=kx+b的圖象有四種情況:①當k>0,b>0,函數(shù)y=kx+b的圖象經過第一、二、三象限;②當k>0,b<0,函數(shù)y=kx+b的圖象經過第一、三、四象限;③當k<0,b>0時,函數(shù)y=kx+b的圖象經過第一、二、四象限;④當k<0,b<0時,函數(shù)y=kx+b的圖象經過第二、三、四象限.6、B【解析】
從圖象確定kx+b>mx時,x的取值范圍即可.【詳解】解:從圖象可以看出,當x<2時,kx+b>mx,故選:B.本題考查了一次函數(shù)與一元一次不等式,體現(xiàn)了數(shù)形結合的思想方法,準確的確定出x的值,是解答本題的關鍵.7、C【解析】
根據(jù)平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【詳解】解:根據(jù)題意,將周長為10的△ABC沿BC方向平移1個單位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=10,
∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故選C.本題考查平移的基本性質:①平移不改變圖形的形狀和大??;②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.8、B【解析】
根據(jù)到角的兩邊的距離相等的點在角的平分線上解答.【詳解】∵P到△ABC的三邊距離相等,∴點P在△ABC的三條角平分線上,∴P是△ABC三條角平分線的交點,故選:B.本題考查的是角平分線的性質,掌握到角的兩邊的距離相等的點在角的平分線上是解題的關鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、12,1.【解析】
用BC×AE可求平行四邊形的面積,再借助面積12=CD×AF可求AF.【詳解】解:根據(jù)平行四邊形的面積=底×高,可得BC×AE=6×2=12;則CD×AF=12,即4×AF=12,所以AF=1.故答案為12,1.本題主要考查了平行四邊形的性質,面積法求解平行四邊形的高或某邊長是解決此類問題常用的方法.10、x(x﹣1)=1【解析】
利用一元二次方程應用中的基本數(shù)量關系:x人參加聚會,兩人只握一次手,握手總次數(shù)為x(x-1)解決問題即可.【詳解】由題意列方程得,x(x-1)=1.故答案為:x(x-1)=1.本題考查了一元二次方程的應用,熟知x人參加聚會,兩人只握一次手,握手總次數(shù)為x(x-1)這一基本數(shù)量關系是解題的關鍵.11、【解析】
根據(jù)一元二次方程根與系數(shù)的關系即可求出答案.【詳解】∵兩根互為相反數(shù),∴根據(jù)韋達定理得:m2-1=0,解得:m=1或m=-1當m=1時,方程是x2+1=0沒有實數(shù)根當m=-1時,方程是x2-1=0有兩個實數(shù)根所以m=-1故答案為:-1本題考查一元二次方程根與系數(shù)的關系,x1+x2=,x1x2=,熟練掌握韋達定理并進行檢驗是否有實數(shù)根是解題關鍵.12、10【解析】
連接PC,根據(jù)等邊三角形三線合一的性質,可得PC=BP,PD+PB要取最小值,應使D、P、C三點一線.【詳解】連接PC,∵△ABC為等邊三角形,D為AB的中點,∴PD+PB的最小值為:PD+PB=PC+PD=CD=AH=10cm.故答案為:10考查軸對稱-最短路線問題,等邊三角形的性質,找出點P的位置是解題的關鍵.13、-1【解析】
眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【詳解】觀察﹣1,﹣4,6,0,﹣1,1,﹣1其中﹣1出現(xiàn)的次數(shù)最多,故答案為:.本題考查了眾數(shù)的概念,解題的關鍵在于對眾數(shù)的理解.三、解答題(本大題共5個小題,共48分)14、(1)y1=4500x+1500;y2=4800x;(2)答案見解析;(3)從甲商場買4臺,從乙商場買6臺時,總運費最少,最少運費是560元【解析】
(1)根據(jù)題意列出函數(shù)解析式即可;(2)①若甲商場購買更優(yōu)惠,可得不等式4500x+1500<4800x,解此不等式,即可求得答案;②若乙商場購買更優(yōu)惠,可得不等式4500x+1500>4800x,解此不等式,即可求得答案;③若兩家商場收費相同,可得方程4500x+1500=4800x,解此方程,即可求得答案;(3)根據(jù)題意列出函數(shù)解析式,再根據(jù)增減性即可進行解答.【詳解】解:(1)y1=6000+(1-25%)×6000(x-1)=4500x+1500;y2=(1-20%)×6000x=4800x;(2)設學校購買x臺電腦,若到甲商場購買更優(yōu)惠,則:4500x+1500<4800x,解得:x>5,即當購買電腦臺數(shù)大于5時,甲商場購買更優(yōu)惠;若到乙商場購買更優(yōu)惠,則:4500x+1500>4800x,解得:x<5,即當購買電腦臺數(shù)小于5時,乙商場購買更優(yōu)惠;若兩家商場收費相同,則:4500x+1500=4800x,解得:x=5,即當購買5臺時,兩家商場的收費相同;(3)w=50a+(10-a)60=600-10a,當a取最大時,費用最小,∵甲商場只有4臺,∴a取4,W=600-40=560,即從甲商場買4臺,從乙商場買6臺時,總運費最少,最少運費是560元.本題考查了一元一次不等式實際應用問題,涉及了不等式與方程的解法,解題的關鍵是理解題意,根據(jù)題意求得函數(shù)解析式,然后利用函數(shù)的性質求解.15、證明:(1)見解析(2)見解析【解析】
(1)根據(jù)AC⊥BC,BD⊥AD,得出△ABC與△BAD是直角三角形,再由AC=BD,AB=BA,根據(jù)HL得出△ABC≌△BAD,即可證出BC=AD.(2)根據(jù)△ABC≌△BAD,得出∠CAB=∠DBA,從而證出OA=OB,△OAB是等腰三角形.【詳解】證明:(1)∵AC⊥BC,BD⊥AD,∴△ABC與△BAD是直角三角形,在△ABC和△BAD中,∵AC="BD",AB=BA,∠ACB=∠BDA=90°,∴△ABC≌△BAD(HL).∴BC=AD.(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.∴△OAB是等腰三角形.16、(1)90,19;(2)B,24;(3)1320戶【解析】
(1)根據(jù)圖表數(shù)據(jù)與百分率對應求得總人數(shù),從而求得a值;(2)結合圖表及數(shù)據(jù)可求得中位數(shù)和E所在的圓心角度數(shù);(3)根據(jù)樣本估計總體.【詳解】(1)∵A組共有27戶,對應的百分率為30%∴總戶數(shù)為:(戶)∴(戶);(2)∵共有90戶,中位數(shù)為第45,46兩個數(shù)據(jù)的平均數(shù),27+19=46,∴中位數(shù)位于B組;E對應的圓心角度數(shù)為:(3)旅游消費8000元以上的家庭為C、D、E組,大約有:2700×=1320(戶).本題考查統(tǒng)計的相關知識,解題關鍵在于梳理統(tǒng)計圖當中的條件信息.17、;【解析】
根據(jù)分式的加法和除法可以化簡題目中的式子,然后將的值代入化簡后的式子即可解答本題.【詳解】解:,,,,當時,原式.本題考查分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.18、(1)證明見解析(2)當四邊形BEDF是菱形時,四邊形AGBD是矩形;證明見解析;【解析】
(1)在證明全等時常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質得出AE=BE=DE,再通過角之間的關系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點、分別是、的中點,∴,.∴.在和中,,∴.解:當四邊形是菱形時,四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.本題主要考查了平行四邊形的基本性質和矩形的判定及全等三角形的判定.平行四邊形基本性質:①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.一、填空題(本大題共5個小題,每小題4分,共20分)19、22.5°【解析】
根據(jù)正方形的對角線平分一組對角求出∠CBE=45°,再根據(jù)等腰三角形兩底角相等求出∠BCE=67.5°,然后根據(jù)∠DCE=∠BCD-∠BCE計算即可得解.【詳解】∵四邊形ABCD是正方形,∴∠CBE=45°,∠BCD=90°,∵BE=BC,∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.故答案為22.5°.本題考查了正方形的性質,等腰三角形的性質,主要利用了正方形的對角線平分一組對角,需熟記.20、()【解析】
設出大樹原來高度,用勾股定理建立方程求解即可.【詳解】設這棵大樹在折斷之前的高度為x米,根據(jù)題意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴這棵大樹在折斷之前的高度為(4)米.故答案為:().本題是勾股定理的應用,解答本題的關鍵是把實際問題轉化為數(shù)學問題來解決.此題也可以直接用算術法求解.21、1【解析】
設矩形的長和寬分別為a、b,根據(jù)根與系數(shù)的關系得到a+b=7,ab=12,利用勾股定理得到矩形的對角線長=,再利用完全平方公式和整體代入的方法可計算出矩形的對角線長為5,則根據(jù)矩形的性質得到矩形的對角線之和為1.【詳解】設矩形的長和寬分別為a、b,
則a+b=7,ab=12,
所以矩形的對角線長==5,
所以矩形的對角線之和為1.
故答案為:1.本題考查了根與系數(shù)的關系,矩形的性質,解題關鍵在于掌握運算公式.22、5【解析】
首先可判斷四邊形BGFD是平行四邊形,再由直角三角形斜邊中線等于斜邊一半,可得BD=FD,則可判斷四邊形BGFD是菱形,設GF=x,則AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【詳解】解:∵,,∴四邊形是平行四邊形,∵,∴,又∵點是中點,∴,∴四邊形是菱形,設,則,,∵在中,,∴,即,解得:,即.故答案是:5.本題考查了菱形的判定與性質、勾股定理及直角三角形的斜邊中線的性質,解答本題的關鍵是判斷出四邊形BGFD是菱形.23、1【解析】
先設∠BAE=x°,根據(jù)正方形性質推出AB=AE=AD,∠BAD=90°,根據(jù)等腰三角形性質和三角形的內角和定理求出∠AEB和∠AED的度數(shù),根據(jù)平角定義求出即可.【詳解】解:設∠BAE=x°.∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD.∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=1°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(1°+x°)=1°.故答案為1.點睛:本題考查了三角形的內角和定理的運用,等腰三角形的性質的運用,正方形性質的應用,解答此題的關鍵是如何把已知角的未知角結合起來,題目比較典型,但是難度較大.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)當ɑ=108°時,四邊形AFDE是平行四邊形.【解析】
(1)根據(jù)旋轉的性質、全等三角形的判定定理證明△ABD≌△ACE,證明結論;(2)根據(jù)平行四邊形的判定定理證明.【詳解】(1)證明:∵△ADE是由△ABC旋轉得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)當ɑ=108°時,四邊形AFDE是平行四邊形。理由:∵∠BAD=108°,AB=AD,∴∠ABD=∠ADB=(180°?∠BAD)=36°∴∠DAE=∠ADB,∴AE//FD,又∵∠CAD=∠BAD-∠BAC=72°,∴∠ADE=∠AED=∴∠CAD=∠ADE∴AF//ED∴四邊形AFDE是平行四邊形考查的是旋轉的性質、全等三角形的判定和性質、平行線的性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.25、(1);(2)見解析;(3).【解析】
(1)證明ΔFME≌ΔAMH,得到HM=EM,根據(jù)等腰直角三角形的性質可得結論.(2)根據(jù)正方形的性質得到點A、E、C在同一條直線上,利用直角三角形斜邊上的中線等于斜邊的一半可知.(3)如圖3中,連接EC,EM,由(1)(2)可知,△CME是等腰直角三角形,利用等腰直角三角形的性質解決問題即可.【詳解】解:(1)結論:CM=ME,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,∴△FME≌△BMH(ASA),∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如圖2,連接,∵四邊形和四邊形是正方形,∴∴點在同一條直線上,∵,為的中點,∴,,∴,∵,∴,∵,∴∴,∴,∴.(3)如圖3中,連接E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度杭州電子科技大學產學研合作項目合同
- 2025年度出租車司機培訓與技能提升合同
- 2025年國際海上救助服務海運貨物運輸合同協(xié)議范本
- 2025年度綠色生態(tài)建設環(huán)保合同范本
- 2025年度企業(yè)并購貸款續(xù)借合同模板
- 北京餐飲合伙合同范本
- 買賣山地合同范例
- vr制作合同范本
- 修路車輛租賃合同范例
- 出售翻新塔吊合同范本
- 咖啡店合同咖啡店合作經營協(xié)議
- 藥膳與食療試題及答案高中
- 北京市西城區(qū)2024-2025學年八年級上學期期末考試數(shù)學試卷含答案
- 2025年南京信息職業(yè)技術學院高職單招數(shù)學歷年(2016-2024)頻考點試題含答案解析
- 二零二五年度海外市場拓展合作協(xié)議4篇
- 2025年春新外研版(三起)英語三年級下冊課件 Unit4第2課時Speedup
- 2024年湖南汽車工程職業(yè)學院單招職業(yè)技能測試題庫標準卷
- 2025中國鐵塔集團安徽分公司招聘29人高頻重點提升(共500題)附帶答案詳解
- 2025年河北省農村信用社招聘歷年高頻重點提升(共500題)附帶答案詳解
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導則
- 公共關系學完整教學課件
評論
0/150
提交評論