版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市第十中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.2.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.已知等差數(shù)列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或104.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.5.用1,2,3,4這4個數(shù)字可寫出()個沒有重復(fù)數(shù)字的三位數(shù)A.24 B.12C.81 D.646.已知函數(shù),則()A. B.C. D.7.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.8.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.59.若圓與圓外切,則()A. B.C. D.10.已知,若,則()A. B.C. D.11.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.105012.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點到準(zhǔn)線的距離為4,過點的直線與拋物線交于,兩點,若,則______14.等差數(shù)列前項之和為,若,則________15.直線的傾斜角為______16.若函數(shù)在x=1處的切線與直線y=kx平行,則實數(shù)k=___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)小張在2020年初向建行貸款50萬元先購房,銀行貸款的年利率為4%,要求從貸款開始到2030年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)18.(12分)已知數(shù)列的前n項和為,且,,數(shù)列滿足,.(1)求和的通項公式;(2)求數(shù)列{}的前n項和.19.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設(shè)P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標(biāo).20.(12分)已知甲射擊的命中率為0.7.乙射擊的命中率為0.8,甲乙兩人的射擊互相獨立.求:(1)甲乙兩人同時擊中目標(biāo)的概率;(2)甲乙兩人中至少有一個人擊中目標(biāo)的概率;(3)甲乙兩人中恰有一人擊中目標(biāo)的概率21.(12分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點M在線段上,且,試問在線段上是否存在一點N,滿足平面,若存在求的值,若不存在,請說明理由?22.(10分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B2、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.3、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項和為取得最大值,則的值為7或8.故選:B.4、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.5、A【解析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A6、B【解析】求出,代值計算可得的值.【詳解】因為,則,故.故選:B.7、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應(yīng)用,屬于中等題.8、C【解析】作出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對應(yīng)的可行域為如圖所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當(dāng)直線平移到點時,縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C9、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.10、B【解析】先求出的坐標(biāo),然后由可得,再根據(jù)向量數(shù)量積的坐標(biāo)運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B11、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C12、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標(biāo),進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準(zhǔn)線的距離為4,所以,則拋物線:,設(shè)點的坐標(biāo)為,的坐標(biāo)為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.15、【解析】把直線方程化為斜截式,再利用斜率與傾斜角的關(guān)系即可得出【詳解】設(shè)直線的傾斜角為由直線化為,故,又,故,故答案為【點睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是16、2【解析】由題可求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、每年至少要還6.17萬元.【解析】根據(jù)貸款總額和還款總額相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【詳解】50萬元10年產(chǎn)生本息和與每年還x萬元的本息和相等,故有購房款50萬元十年的本息和:50(1+4%)10,每年還x萬元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,從而有50(1+4%)10=,解得x≈6.17,即每年至少要還6.17萬元.18、(1);;(2)【解析】(1)求數(shù)列的通項公式主要利用求解,分情況求解后要驗證是否滿足的通項公式,將求得的代入整理即可得到的通項公式;(2)整理數(shù)列的通項公式得,依據(jù)特點采用錯位相減法求和試題解析:(1)∵,∴當(dāng)時,.當(dāng)時,.∵時,滿足上式,∴.又∵,∴,解得:.故,,.(2)∵,,∴①②由①-②得:∴,.考點:1.數(shù)列通項公式求解;2.錯位相減法求和【方法點睛】求數(shù)列的通項公式主要利用,分情況求解后,驗證的值是否滿足關(guān)系式,解決非等差等比數(shù)列求和問題,主要有兩種思路:其一,轉(zhuǎn)化的思想,即將一般數(shù)列設(shè)法轉(zhuǎn)化為等差或等比數(shù)列,這一思想方法往往通過通項分解(即分組求和)或錯位相減來完成,其二,不能轉(zhuǎn)化為等差等比數(shù)列的,往往通過裂項相消法,倒序相加法來求和,本題中,根據(jù)特點采用錯位相減法求和19、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設(shè)出圓心坐標(biāo),再結(jié)合點到直線距離公式計算作答.(2)設(shè)點,求出圓的方程,結(jié)合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設(shè)圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設(shè)點,,設(shè)動圓上任意一點當(dāng)與點P,M都不重合時,,有,當(dāng)與點P,M之一重合時,對應(yīng)為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設(shè)條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式20、(1)0.56(2)0.94(3)0.38【解析】(1)根據(jù)獨立事件的概率公式計算;(2)結(jié)合對立事件的概率公式、獨立事件的概率公式計算(3)利用互斥事件與獨立事件的概率公式計算【小問1詳解】設(shè)甲擊中目標(biāo)為事件,乙擊中目標(biāo)為事件,甲乙兩人同時擊中目標(biāo)的概率;【小問2詳解】甲乙兩人中至少有一個人擊中目標(biāo)的概率為;【小問3詳解】甲乙兩人中恰有一人擊中目標(biāo)的概率為21、(1)證明見解析;(2)存在,的值為.【解析】(1)先證明,再證明,由線面垂直的判定定理求證即可;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,求出平面的法向量,由平面,利用向量法能求出的值【詳解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,如圖,,,,,所以,,設(shè)平面的法向量,則,取,得,點M在線段上,且,點N在線段上,設(shè),,設(shè),則,,,即,解得,,,∵,∴,解得.∴的值為.22、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關(guān)于、、的方程組,進而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置關(guān)系、根與系數(shù)的關(guān)系得到兩個交點坐標(biāo)間的關(guān)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度學(xué)校消防安全設(shè)備安裝與定期檢查合同3篇
- 2025年度木材加工企業(yè)專用木方批量采購合同2篇
- 2025版私家車租賃及車務(wù)托管服務(wù)合同3篇
- 2024年重型設(shè)備鋼結(jié)構(gòu)制作協(xié)議
- 2024煤炭開采技術(shù)承包與技術(shù)服務(wù)合同3篇
- 學(xué)生資助工作計劃四篇
- 二零二五年度個人信息保護安全協(xié)議隱私權(quán)維護3篇
- 2025年度企業(yè)總部搬遷及搬遷補償協(xié)議3篇
- 二零二五年企業(yè)電子商務(wù)平臺開發(fā)與運營合同2篇
- 2024年電梯購銷及安裝工程協(xié)議版
- 一年級科學(xué)上冊教學(xué)工作總結(jié)
- 暨南大學(xué)《馬克思主義基本原理概論》題庫歷年期末考試真題分類匯編及答案
- 有色金屬工業(yè)安裝工程質(zhì)量檢驗評定標(biāo)準(zhǔn)
- 物理學(xué)的起源和發(fā)展課件
- 南京大學(xué)《宏觀經(jīng)濟學(xué)》習(xí)題庫及答案
- (中職)《電子商務(wù)基礎(chǔ)》第1套試卷試題及答案
- 汽車三維建模虛擬仿真實驗
- 無人機智慧旅游解決方案
- 行車起重作業(yè)風(fēng)險分析及管控措施
- 健康管理主題PPT模板-健康管理
- 山西事業(yè)單位專業(yè)技術(shù)職務(wù)聘任管理
評論
0/150
提交評論