




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建寧德市高二上數(shù)學期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是拋物線上的一點,F是拋物線的焦點,則點M到F的距離等于()A.6 B.5C.4 D.22.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.3.已知函數(shù)滿足對于恒成立,設(shè)則下列不等關(guān)系正確是()A. B.C. D.4.已知空間中四點,,,,則點D到平面ABC的距離為()A. B.C. D.05.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-46.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.87.設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.8.若存在過點(0,-2)的直線與曲線和曲線都相切,則實數(shù)a的值是()A.2 B.1C.0 D.-29.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.10.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點,則等于()A. B.C. D.11.中國大運河項目成功人選世界文化遺產(chǎn)名錄,成為中國第46個世界遺產(chǎn)項目,隨著對大運河的保護與開發(fā),大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發(fā)順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順水中的速度為,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.12.若方程表示雙曲線,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的表面積是,則該球的體積為________.14.在學習《曲線與方程》的課堂上,老師給出兩個曲線方程;,老師問同學們:你想到了什么?能得到哪些結(jié)論?下面是四位同學的回答:甲:曲線關(guān)于對稱;乙:曲線關(guān)于原點對稱;丙:曲線與坐標軸在第一象限圍成的圖形面積;丁:曲線與坐標軸在第一象限圍成的圖形面積;四位同學回答正確的有______(選填“甲、乙、丙、丁”)15.求值______.16.在一平面直角坐標系中,已知,現(xiàn)沿x軸將坐標平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標準方程;(2)設(shè)左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標,否則說明理由.18.(12分)已知函數(shù).(1)當時,討論的單調(diào)性;(2)當時,證明:.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當a=1時,對于任意的,,都有恒成立,則m的取值范圍.20.(12分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當軸時,(1)求橢圓E的方程;(2)求的范圍21.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.22.(10分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.2、A【解析】由,當三點共線時,取得最值【詳解】設(shè)是橢圓的右焦點,則又因為,,所以,則故選:A3、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項的對錯.【詳解】設(shè),則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯,令(),則,當時,,當時,∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯,,故,所以,A對,,故,所以,B錯,故選:A.4、C【解析】根據(jù)題意,求得平面的一個法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點,,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點D到平面ABC的距離為.故選:C.5、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當且僅當時等號成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個數(shù),,至少有一個不大于,故選:B.6、C【解析】首先將圓心坐標代入直線方程求出參數(shù)a,求得點A的坐標,由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7、A【解析】構(gòu)造函數(shù),求導(dǎo)判斷其單調(diào)性即可【詳解】令,,令得,,當時,,單調(diào)遞增,,,,,,,故選:A8、A【解析】在兩曲線上設(shè)切點,得到切線,又因為(0,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.9、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D10、D【解析】根據(jù)向量的線性運算公式化簡可得結(jié)果.【詳解】因為E,F(xiàn)分別是AB,AC的中點,所以,,所以,故選:D11、A【解析】求出平均速度V,進而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為,逆流而上的時間為,則平均速度,由基本不等式可得,而,當且僅當時,兩個不等式都取得“=”,而根據(jù)題意,于是.故選:A.12、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設(shè)球的半徑為r,則表面積,解得,所以體積,故答案為:【點睛】本題考查已知球的表面積求體積,關(guān)鍵是求出半徑,再進行求解,考查基礎(chǔ)知識掌握程度,屬基礎(chǔ)題.14、甲、乙、丙、丁【解析】結(jié)合對稱性判斷甲、乙的正確性;通過對比和與坐標軸在第一象限圍成的圖形面積來判斷丙丁的正確性.【詳解】對于甲:交換方程中和的位置得,所以曲線關(guān)于對稱,甲回答正確.對于乙:和兩個點都滿足方程,所以曲線關(guān)于原點對稱,乙回答正確.對于丙:直線與坐標軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對于丁:圓與坐標軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁15、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:16、【解析】平面直角坐標系中,沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標系中,已知,現(xiàn)沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標公式求得兩直線斜率,結(jié)合點在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,結(jié)合韋達定理,得到,結(jié)合直線的方程,得到直線所過的定點坐標.【詳解】(1)由題意可知,,又,所以,所以橢圓的標準方程為:.(2),設(shè),因為點在橢圓上,所以,,又,.(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點.【點睛】思路點睛:該題考查是有關(guān)橢圓的問題,解題思路如下:(1)根據(jù)題中所給的條件,結(jié)合橢圓中的關(guān)系,建立方程組求得橢圓方程;(2)根據(jù)斜率坐標公式,結(jié)合點在橢圓上,整理求得斜率之積,可以當結(jié)論來用;(3)將直線與橢圓方程聯(lián)立,結(jié)合韋達定理,結(jié)合直線方程,求得其過的定點.18、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【解析】(1)當時,利用求得的單調(diào)區(qū)間.(2)將問題轉(zhuǎn)化為證明,利用導(dǎo)數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當時,,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當時,單調(diào)遞減;當時,單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】因為,所以,要證,只需證當時,即可.,易知在上單調(diào)遞增,又,所以,且,即,當時,單調(diào)遞減;當時,單調(diào)遞增,,所以.【點睛】在證明不等式的過程中,直接證明困難時,可考慮證明和兩個不等式成立,從而證得成立.19、(1)答案見解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域為,若,恒有,當時,,當時,,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當時,;當時,,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當時,;當時,,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當,在上單調(diào)遞增,在上單調(diào)遞減,當,在和上單調(diào)遞增,在上單調(diào)遞減,當,在上單調(diào)遞增,當,在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時,在和上單調(diào)遞增,在上單調(diào)遞減;當a=1時,,,,∴.又,,∴.由題意得,,∴.20、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進而得到答案.【小問1詳解】當軸時,取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當軸時,由(1)知:,所以,當AB斜率為k時,直線AB為,,消去y得,所以,,所以,綜上,的范圍是.21、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系:則,,,,.因為為的中點,所以.所以,.設(shè)平面的一個法向量為,由得.令,得,,所以.設(shè)平面的一個法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村鋪面租房合同標準文本
- 安裝安全閥規(guī)范
- 九寨溝旅游合同標準文本
- 2025工程合同管理與數(shù)字化創(chuàng)新
- 《凡卡》讀后感5篇
- 2025建筑幕墻施工承包合同樣本
- 個人分期付款合同標準文本
- 產(chǎn)品貼牌銷售合同標準文本
- 公轉(zhuǎn)私借款合同標準文本
- 開漢堡店的創(chuàng)業(yè)計劃書
- 勞動教育與勞動體驗智慧樹知到期末考試答案章節(jié)答案2024年中南財經(jīng)政法大學
- 近零能耗居住建筑技術(shù)標準
- 2024年合肥市高三第二次教學質(zhì)量(二模)物理試卷(含答案)
- 2023年北京八十中初二(下)期中數(shù)學試卷(教師版)
- 2023版《管理學》考試復(fù)習題庫500題(含答案)
- (高清版)WST 813-2023 手術(shù)部位標識標準
- 古詩三首《元日》《清明》組詩公開課一等獎創(chuàng)新教學設(shè)計
- 紅樓夢40回課件
- 重癥救治技能競賽培訓方案
- 2024年中國郵政四川省分公司招聘筆試參考題庫含答案解析
- 金融數(shù)學基礎(chǔ)課件
評論
0/150
提交評論