




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市廬陽區(qū)第六中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,,則()A. B.C. D.2.在如圖所示中,二次函數(shù)與指數(shù)函數(shù)的圖象只可為A. B.C. D.3.命題“,”的否定是()A., B.,C., D.,4.定義在上的奇函數(shù)滿足,若,,則()A. B.0C.1 D.25.若,則的值為A. B.C. D.6.設(shè)且則()A. B.C. D.7.已知梯形是直角梯形,按照斜二測畫法畫出它的直觀圖(如圖所示),其中,,,則直角梯形邊的長度是A. B.C. D.8.命題P:“,”的否定為A., B.,C., D.,9.若圓上有且僅有兩個點到直線的距離等于1,則半徑的取值范圍是()A. B.C. D.10.若,,三點共線,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.定義在上的函數(shù)則的值為______12.已知,,則ab=_____________.13.設(shè),為單位向量.且、的夾角為,若=+3,=2,則向量在方向上的射影為________.14.計算:()0+_____15.已知函數(shù),則_________16.已知定義在上的函數(shù)滿足,且當(dāng)時,.若對任意,恒成立,則實數(shù)的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中為常數(shù))的圖象經(jīng)過兩點.(1)判斷并證明函數(shù)的奇偶性;(2)證明函數(shù)在區(qū)間上單調(diào)遞增.18.已知函數(shù)(是常數(shù))是奇函數(shù),且滿足.(1)求的值;(2)試判斷函數(shù)在區(qū)間上的單調(diào)性并用定義證明.19.女排世界杯比賽采用局勝制,前局比賽采用分制,每個隊只有贏得至少分,并同時超過對方分時,才勝局;在決勝局(第五局)采用分制,每個隊只有贏得至少分,并領(lǐng)先對方分為勝.在每局比賽中,發(fā)球方贏得此球后可得分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對方得分.現(xiàn)有甲乙兩隊進行排球比賽.(1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來的每局比賽甲隊獲勝的概率為,求甲隊最后贏得整場比賽的概率;(2)若前四局比賽中甲、乙兩隊已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊當(dāng)前的得分為甲、乙各分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時甲贏分的概率為,乙發(fā)球時甲贏分的概率為,得分者獲得下一個球的發(fā)球權(quán).求甲隊在個球以內(nèi)(含個球)贏得整場比賽的概率.20.在平面直角坐標系xOy中,角的頂點與原點O重合,始邊與x軸的正半軸重合,它的終邊過點,以角的終邊為始邊,逆時針旋轉(zhuǎn)得到角Ⅰ求值;Ⅱ求的值21.若函數(shù)定義域為,且存在非零實數(shù),使得對于任意恒成立,稱函數(shù)滿足性質(zhì)(1)分別判斷下列函數(shù)是否滿足性質(zhì)并說明理由①②(2)若函數(shù)既滿足性質(zhì),又滿足性質(zhì),求函數(shù)的解析式(3)若函數(shù)滿足性質(zhì),求證:存在,使得
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先計算得到,,再利用展開得到答案.詳解】,,;,;故選:【點睛】本題考查了三角函數(shù)值的計算,變換是解題的關(guān)鍵.2、C【解析】指數(shù)函數(shù)可知,同號且不相等,再根據(jù)二次函數(shù)常數(shù)項為零經(jīng)過原點即可得出結(jié)論【詳解】根據(jù)指數(shù)函數(shù)可知,同號且不相等,則二次函數(shù)的對稱軸在軸左側(cè),又過坐標原點,故選:C【點睛】本題主要考查二次函數(shù)與指數(shù)函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題3、C【解析】利用全稱量詞的命題的否定解答即可.【詳解】解:因為全稱量詞的命題的否定是存在量詞的命題,命題“,”是全稱量詞的命題,所以其否定是“,”.故選:C4、C【解析】首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.5、B【解析】根據(jù)誘導(dǎo)公式將原式化簡為,分子分母同除以,即可求出結(jié)果.【詳解】因為,又,所以原式.故選B【點睛】本題主要考查誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系,熟記公式即可,屬于基礎(chǔ)題型.6、C【解析】試題分析:由已知得,,去分母得,,所以,又因為,,所以,即,選考點:同角間的三角函數(shù)關(guān)系,兩角和與差的正弦公式7、B【解析】根據(jù)斜二測畫法,原來的高變成了方向的線段,且長度是原高的一半,原高為而橫向長度不變,且梯形是直角梯形,故選8、B【解析】“全稱命題”的否定是“特稱命題”根據(jù)全稱命題的否定寫出即可【詳解】解:命題P:“,”的否定是:,故選B【點睛】本題考察了“全稱命題”的否定是“特稱命題”,屬于基礎(chǔ)題.9、C【解析】圓上有且僅有兩個點到直線的距離等于1,先求圓心到直線的距離,再求半徑的范圍【詳解】解:圓的圓心坐標,圓心到直線的距離為:,又圓上有且僅有兩個點到直線的距離等于1,滿足,即:,解得故半徑的取值范圍是,(如圖)故選:【點睛】本題考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題10、A【解析】先求出,從而可得關(guān)于的方程,故可求的值.【詳解】因為,,故,因為三點共線,故,故,故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵定義在上的函數(shù)∴故答案為點睛::(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值(2)當(dāng)給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍12、1【解析】將化成對數(shù)形式,再根據(jù)對數(shù)換底公式可求ab的值.【詳解】,.故答案為:1.13、【解析】考點:該題主要考查平面向量的概念、數(shù)量積的性質(zhì)等基礎(chǔ)知識,考查數(shù)學(xué)能力.14、【解析】根據(jù)根式、指數(shù)和對數(shù)運算化簡所求表達式.【詳解】依題意,原式.故答案為:【點睛】本小題主要考查根式、指數(shù)和對數(shù)運算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、1【解析】根據(jù)分段函數(shù)的定義即可求解.【詳解】解:因為函數(shù),所以,所以,故答案為:1.16、【解析】根據(jù)題意求出函數(shù)和圖像,畫出圖像根據(jù)圖像解題即可.【詳解】因為滿足,即;又由,可得,因為當(dāng)時,所以當(dāng)時,,所以,即;所以當(dāng)時,,所以,即;根據(jù)解析式畫出函數(shù)部分圖像如下所示;因為對任意,恒成立,根據(jù)圖像當(dāng)時,函數(shù)與圖像交于點,即的橫坐標即為的最大值才能符合題意,所以,解得,所以實數(shù)的取值范圍是:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】⑴根據(jù)函數(shù)奇偶性的定義判斷并證明函數(shù)的奇偶性;⑵根據(jù)函數(shù)單調(diào)性的定義證明即可;解析:(1)解:∵函數(shù)的圖象經(jīng)過兩點∴解得∴.判斷:函數(shù)是奇函數(shù)證明:函數(shù)的定義域,∵對于任意,,∴函數(shù)是奇函數(shù).(2)證明:任取,則∵,∴,∴.∴在區(qū)間上單調(diào)遞增.18、(1),(2)在區(qū)間(0,0.5)上是單調(diào)遞減的【解析】(Ⅰ)∵函數(shù)是奇函數(shù),則即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分當(dāng)時,----------------------------10分∴,即函數(shù)在區(qū)間上為減函數(shù).------------12分[解法2:設(shè),則==------------------------------10分∵∴,,∴,即∴函數(shù)在區(qū)間上為減函數(shù).--------------------------12分].19、(1);(2)【解析】(1)先確定甲隊最后贏得整場比賽的情況,再分別根據(jù)獨立事件概率乘法公式求解,最后根據(jù)互斥事件概率加法公式得結(jié)果;(2)先根據(jù)比賽規(guī)則確定x的取值,再確定甲贏得整場比賽的情況,最后根據(jù)獨立事件概率乘法公式以及互斥事件概率加法公式得結(jié)果.【詳解】(1)甲隊最后贏得整場比賽的情況為第四局贏或第四局輸?shù)谖寰众A,所以甲隊最后贏得整場比賽的概率為,(2)設(shè)甲隊x個球后贏得比賽,根據(jù)比賽規(guī)則,x的取值只能為2或4,對應(yīng)比分為兩隊打了2個球后甲贏得整場比賽,即打第一個球甲發(fā)球甲得分,打第二個球甲發(fā)球甲得分,此時概率為;兩隊打了4個球后甲贏得整場比賽,即打第一個球甲發(fā)球甲得分,打第二個球甲發(fā)球甲失分,打第三個球乙發(fā)球甲得分,打第四個球甲發(fā)球甲得分,或打第一個球甲發(fā)球甲失分,打第二個球乙發(fā)球甲得分,打第三個球甲發(fā)球甲得分,打第四個球甲發(fā)球甲得分,此時概率為.故所求概率為:20、(Ⅰ)(Ⅱ)【解析】Ⅰ由題意利用任意角的三角函數(shù)的定義,求得的值Ⅱ先根據(jù)題意利用任意角的三角函數(shù)的定義求得、的值,再利用二倍角公式求得、的值,再利用兩角和的余弦公式求得的值【詳解】解:Ⅰ角的頂點與原點O重合,始邊與x軸的正半軸重合,它的終邊過點,Ⅱ以角的終邊為始邊,逆時針旋轉(zhuǎn)得到角,由Ⅰ利用任意角的三角函數(shù)的定義可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級上冊音樂實踐活動計劃
- 2025年小學(xué)節(jié)約資源教育計劃
- 青島版本小學(xué)科學(xué)實踐活動計劃
- 國際體育政策與經(jīng)紀行業(yè)競爭-全面剖析
- 六年級勞技教學(xué)活動安排計劃
- 毛紡產(chǎn)業(yè)數(shù)字化轉(zhuǎn)型升級-全面剖析
- 消防安全實習(xí)生的實踐體會
- 四年級組科學(xué)探究活動質(zhì)量提升計劃
- 初中歷史課外活動組織計劃
- 智能家居系統(tǒng)在不同文化背景下的應(yīng)用研究-全面剖析
- 公司關(guān)聯(lián)擔(dān)保效力裁判規(guī)則完善研究
- 2024年內(nèi)蒙古氣象部門招聘呼和浩特包頭鄂爾多斯等考試真題
- 炎德·英才大聯(lián)考長郡中學(xué)2025屆高三3月月考試卷(七)地理試卷(含答案詳解)
- 遼寧省營口市大石橋市第二初級中學(xué)2024-2025學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試卷
- 2025年法治素養(yǎng)考試試題及答案
- 居室空間設(shè)計 課件 項目一居室空間設(shè)計概述
- 《經(jīng)濟形勢分析》課件
- T-CPI 11037-2024 石油天然氣鉆采設(shè)備水力振蕩器技術(shù)與應(yīng)用規(guī)范
- 人教版六年級下冊數(shù)學(xué)第二單元百分數(shù)(二)綜合練習(xí)卷-(附答案)
- 產(chǎn)科醫(yī)院感染的標準預(yù)防
- 2025年北京電子科技職業(yè)學(xué)院高職單招高職單招英語2016-2024年參考題庫含答案解析
評論
0/150
提交評論