2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題_第1頁
2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題_第2頁
2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題_第3頁
2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題_第4頁
2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省忻州市靜樂縣靜樂一中高三下學期三診模擬考試數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知變量的幾組取值如下表:12347若與線性相關,且,則實數(shù)()A. B. C. D.2.在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為()A. B. C. D.3.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.4.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.5.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.6.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.7.設集合,,則().A. B.C. D.8.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.9.復數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.10.閱讀如圖的程序框圖,運行相應的程序,則輸出的的值為()A. B. C. D.11.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4012.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為數(shù)列的前項和,若,則__________.14.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______15.已知向量,且向量與的夾角為_______.16.已知各棱長都相等的直三棱柱(側棱與底面垂直的棱柱稱為直棱柱)所有頂點都在球的表面上.若球的表面積為則該三棱柱的側面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,不等式恒成立,求的最小值;(2)設數(shù)列,其前項和為,證明:.18.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.19.(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.20.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設四個籃球館一個月內各館使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,21.(12分)設都是正數(shù),且,.求證:.22.(10分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數(shù)值.2、C【解析】

根據(jù)直線與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.3、B【解析】

求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調遞減,上單調遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉化為函數(shù)圖象間交點個數(shù)的問題,難度不大.4、B【解析】

根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.5、B【解析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.6、A【解析】

結合已知可知,可求,進而可求,代入,結合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數(shù)的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數(shù)的圖象及性質的簡單應用,解題的關鍵是性質的靈活應用.7、D【解析】

根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,8、C【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.9、D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數(shù)的問題,涉及到的知識點有復數(shù)的乘除運算,復數(shù)的共軛復數(shù),復數(shù)的模,屬于基礎題目.10、C【解析】

根據(jù)給定的程序框圖,計算前幾次的運算規(guī)律,得出運算的周期性,確定跳出循環(huán)時的n的值,進而求解的值,得到答案.【詳解】由題意,,第1次循環(huán),,滿足判斷條件;第2次循環(huán),,滿足判斷條件;第3次循環(huán),,滿足判斷條件;可得的值滿足以3項為周期的計算規(guī)律,所以當時,跳出循環(huán),此時和時的值對應的相同,即.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規(guī)律是解答的關鍵,著重考查了推理與計算能力.11、A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.12、C【解析】

先求導得(),由于函數(shù)有兩個不同的極值點,,轉化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構造新函數(shù),通過利用導數(shù)研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數(shù)研究函數(shù)單調性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構造函數(shù)法,還考查分析和計算能力,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、-254【解析】

利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關系求,考查學生的數(shù)學運算求解能力,是一道中檔題.14、【解析】

先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎題.15、1【解析】

根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎題.16、【解析】

只要算出直三棱柱的棱長即可,在中,利用即可得到關于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側面積為.故答案為:.【點睛】本題考查特殊柱體的外接球問題,考查學生的空間想象能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當時,方程的,因此在區(qū)間上恒為負數(shù).所以時,,函數(shù)在區(qū)間上單調遞減.又,所以函數(shù)在區(qū)間上恒成立;當時,方程有兩個不等實根,且滿足,所以函數(shù)的導函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點睛】本題考查利用導數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學生的邏輯推理能力以及數(shù)學計算能力,是一道難題.18、(1);(2).【解析】

(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【詳解】(1)由題設得.由正弦定理得∵∴,所以或.當,(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應用正弦定理將邊化角,屬綜合性基礎題.19、(1);(2).【解析】

(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.20、(1)見解析,12.5(2)①②20【解析】

(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數(shù)求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關鍵是要讀懂題意,屬于中檔題.21、證明見解析【解析】

利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關鍵;屬于中檔題。22、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論