版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
有理數(shù)的十種運(yùn)算技巧題型01歸類(lèi)法【典例分析】【例1-1】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:;【答案】【分析】本題主要考查了有理數(shù)的加法,掌握運(yùn)算法則,利用加法的交換律與結(jié)合律進(jìn)行計(jì)算是解題關(guān)鍵.去括號(hào)利用,再利用加法的交換律與結(jié)合律進(jìn)行計(jì)算即可.【詳解】;【例1-2】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:.【答案】【分析】本題主要考查了有理數(shù)的加法,掌握運(yùn)算法則,利用加法的交換律與結(jié)合律進(jìn)行計(jì)算是解題關(guān)鍵.去括號(hào)利用,再利用加法的交換律與結(jié)合律進(jìn)行計(jì)算即可.【詳解】.【例1-3】(23-24七年級(jí)上·北京朝陽(yáng)·期末)計(jì)算:.【答案】【分析】本題主要考查了有理數(shù)的加法運(yùn)算,熟練掌握相關(guān)運(yùn)算順序和運(yùn)算法則是解題的關(guān)鍵.【詳解】解:.【變式演練】【變式1-1】(23-24七年級(jí)上·北京豐臺(tái)·階段練習(xí))(1)計(jì)算:;
(2)計(jì)算:【答案】(1)7;(2)【分析】本題主要考查了有理數(shù)加法運(yùn)算,解題的關(guān)鍵是熟練掌握有理數(shù)加法運(yùn)算法則,準(zhǔn)確計(jì)算.(1)根據(jù)有理數(shù)加法運(yùn)算法則進(jìn)行計(jì)算即可;(2)根據(jù)有理數(shù)加法的運(yùn)算律進(jìn)行簡(jiǎn)單計(jì)算即可.【詳解】解:(1);(2).【變式1-2】(23-24七年級(jí)上·甘肅蘭州·期中)【答案】【分析】本題考查有理數(shù)加減混合運(yùn)算,涉及有理數(shù)加減運(yùn)算法則,熟記相關(guān)運(yùn)算法則是解決問(wèn)題的關(guān)鍵.【詳解】解:.【變式1-3】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:【答案】【分析】本題考查了有理數(shù)的加法.解題關(guān)鍵是綜合應(yīng)用加法交換律和結(jié)合律,簡(jiǎn)化計(jì)算.此題可以運(yùn)用加法的交換律交換加數(shù)的位置,原式可變?yōu)?,然后利用加法的結(jié)合律將兩個(gè)加數(shù)相加.【詳解】解:,,,.
題型02湊整法【典例分析】【例2-1】(21-22七年級(jí)上·廣東汕頭·期中)計(jì)算:;【答案】-1【分析】本題考查了有理數(shù)的加減運(yùn)算,有理數(shù)加法的運(yùn)算律,解題的關(guān)鍵是∶先去括號(hào),然后利用有理數(shù)加法的運(yùn)算律和有理數(shù)的加減運(yùn)算法則計(jì)算即可;【詳解】解∶原式【例2-2】(23-24七年級(jí)上·山東淄博·開(kāi)學(xué)考試)請(qǐng)用適當(dāng)?shù)姆椒ㄓ?jì)算:【答案】【分析】本題主要考查了有理數(shù)的混合運(yùn)算、有理數(shù)乘法運(yùn)算律、有理數(shù)加法運(yùn)算律等知識(shí)點(diǎn),靈活運(yùn)用相關(guān)運(yùn)算律成為解題的關(guān)鍵.運(yùn)用加法交換律進(jìn)行簡(jiǎn)便運(yùn)算即可;【詳解】解:【例2-3】(23-24七年級(jí)上·廣東惠州·期中)計(jì)算:.【答案】【分析】解:本題考查了有理數(shù)的加法運(yùn)算,利用加法交換律和結(jié)合律進(jìn)行運(yùn)算即可得出結(jié)果,掌握有理數(shù)的運(yùn)算法則和運(yùn)算律是解題的關(guān)鍵.【詳解】解:原式.【變式演練】【變式2-1】(23-24七年級(jí)上·四川成都·期中)計(jì)算:;【答案】【分析】本題考查有理數(shù)的混合運(yùn)算.運(yùn)用加法結(jié)合律可簡(jiǎn)便運(yùn)算;【詳解】.【變式2-2】(23-24七年級(jí)上·山東德州·階段練習(xí))計(jì)算:.【答案】【分析】根據(jù)有理數(shù)的加法運(yùn)算律計(jì)算,即可求解;【詳解】解:【點(diǎn)睛】本題主要考查了有理數(shù)的加法運(yùn)算律,熟練掌握有理數(shù)的加法運(yùn)算律是解題的關(guān)鍵【變式2-3】.(23-24七年級(jí)上·北京西城·期中)計(jì)算:(1);(2);【答案】(1)(2)【分析】本題考查了含乘方的有理數(shù)混合運(yùn)算以及加法運(yùn)算律和乘法運(yùn)算律,熟練掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.(1)根據(jù)有理數(shù)加減混合運(yùn)算法則計(jì)算即可;(2)根據(jù)有理數(shù)加減混合運(yùn)算法則,結(jié)合加法運(yùn)算律計(jì)算即可;【詳解】(1)解:;)解:;
題型03對(duì)消法【典例分析】【例3-1】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:;【答案】0【分析】本題考查了有理數(shù)加法,在進(jìn)行有理數(shù)加法運(yùn)算時(shí),首先判斷兩個(gè)加數(shù)的符號(hào):是同號(hào)還是異號(hào),是否有0.從而確定用那一條法則.先算同分母分?jǐn)?shù),再相加即可求解;【詳解】解:;【例3-2】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:.【答案】1【分析】此題考查了有理數(shù)的加法,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.原式1、3項(xiàng)結(jié)合,2、4項(xiàng)結(jié)合,計(jì)算即可得到結(jié)果.【詳解】解:.【例3-3】(2024七年級(jí)上·全國(guó)·專題練習(xí))用適當(dāng)方法計(jì)算:【答案】5.5【分析】本題主要考查有理數(shù)的加法運(yùn)算,掌握有理數(shù)加法運(yùn)算法則和加法運(yùn)算律是解題的關(guān)鍵.首先運(yùn)用加法交換律將原式整理為,然后進(jìn)行有理數(shù)加法運(yùn)算即可.【詳解】解:.【變式演練】【變式3-1】(23-24七年級(jí)上·吉林長(zhǎng)春·期中)計(jì)算:;【答案】【分析】本題考查了有理數(shù)的運(yùn)算,根據(jù)有理數(shù)加法交換律和結(jié)合律運(yùn)算計(jì)算即可;【詳解】解:;【變式3-2】(23-24七年級(jí)上·福建泉州·期中)計(jì)算:;【答案】【分析】利用加法交換律和結(jié)合律進(jìn)行計(jì)算即可;【詳解】【變式3-3】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算:;【答案】【分析】本題考查了有理數(shù)加法,在進(jìn)行有理數(shù)加法運(yùn)算時(shí),首先判斷兩個(gè)加數(shù)的符號(hào):是同號(hào)還是異號(hào),是否有0.從而確定用那一條法則.先算同分母分?jǐn)?shù),再相加即可求解;【詳解】(2);
題型04組合法【典例分析】【例4-1】(23-24七年級(jí)上·江蘇泰州·階段練習(xí))計(jì)算題:【答案】【分析】本題主要考查了有理數(shù)的混合計(jì)算:根據(jù)有理數(shù)的加減計(jì)算法則求解即可;【詳解】解:原式;【例4-2】(21-22七年級(jí)上·廣東廣州·開(kāi)學(xué)考試)能簡(jiǎn)算的要簡(jiǎn)算:;【答案】34【分析】本題考查了有理數(shù)的混合運(yùn)算:利用加法交換律進(jìn)行簡(jiǎn)便運(yùn)算即可;【詳解】解:原式;【例4-3】(23-24七年級(jí)上·河南南陽(yáng)·期末)計(jì)算:;【答案】;【分析】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握混合運(yùn)算的順序是解答本題的關(guān)鍵.先把減法統(tǒng)一成加法,再利用加法的交換律和結(jié)合律計(jì)算;【詳解】原式
【變式演練】【變式4-1】(23-24七年級(jí)上·新疆烏魯木齊·期中)計(jì)算:;【答案】【分析】本題主要考查了加法運(yùn)算律、乘法運(yùn)算律、含乘方的有理數(shù)的混合運(yùn)算等知識(shí)點(diǎn),掌握相關(guān)運(yùn)算法則是解題的關(guān)鍵.先把小數(shù)化成分?jǐn)?shù),然后按照加法交換律進(jìn)行簡(jiǎn)便運(yùn)算即可;【詳解】解:.【變式4-2】(23-24七年級(jí)上·陜西咸陽(yáng)·階段練習(xí))計(jì)算下列各題.【答案】【分析】此題考查了有理數(shù)的加減混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.去掉括號(hào),將同分母分?jǐn)?shù)結(jié)合,原式可化為,結(jié)合有理數(shù)的加減混合運(yùn)算,即可求解本題.【詳解】原式【變式4-3】(23-24七年級(jí)上·陜西渭南·期中)用簡(jiǎn)便方法計(jì)算:.【答案】【分析】本題考查的是有理數(shù)的加減混合運(yùn)算,先化為省略加號(hào)的和的形式,再結(jié)合加法的運(yùn)算律把分母相同的兩個(gè)數(shù)先加即可.【詳解】解:.
題型05分解法【典例分析】【例5-1】(23-24七年級(jí)上·四川眉山·階段練習(xí))計(jì)算:.【答案】【詳解】【例5-2】(21-22七年級(jí)上·廣東廣州)能簡(jiǎn)算的要簡(jiǎn)算:.【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算:通過(guò)觀察可知分子分母的差為1,先寫(xiě)成1加減分?jǐn)?shù)單位,整數(shù)分組計(jì)算,分?jǐn)?shù)簡(jiǎn)算時(shí),根據(jù)裂項(xiàng)公式先拆分,再簡(jiǎn)算.【詳解】)解:原式.【例5-3】(23-24七年級(jí)上·山西朔州·期中)閱讀下題中的計(jì)算方法,解決問(wèn)題.(1)解:原式上面這種方法叫拆項(xiàng)法.仿照上面的拆項(xiàng)法可將拆為_(kāi)________,拆為_(kāi)________.(2)類(lèi)比上述計(jì)算方法計(jì)算:.【答案】(1),(2)【分析】本題主要考查了有理數(shù)加減混合運(yùn)算;(1)根據(jù)題干信息進(jìn)行解答即可;(2)利用題干提供的信息,運(yùn)用有理數(shù)加減混合運(yùn)算法則進(jìn)行計(jì)算即可.解題的關(guān)鍵是熟練掌握有理數(shù)加減混合運(yùn)算法則,準(zhǔn)確計(jì)算.【詳解】(1)解:,,故答案為:;;(2)解:【變式演練】【變式5-1】(23-24七年級(jí)上·江蘇南通·階段練習(xí))求的值.【答案】【分析】把每一項(xiàng)拆成兩個(gè)分?jǐn)?shù)的差的形式,即可求解.【詳解】解:.【點(diǎn)睛】本題是規(guī)律探索問(wèn)題及其應(yīng)用,考查有理數(shù)的混合運(yùn)算,尋找到規(guī)律是解題的關(guān)鍵【變式5-2】(2023七年級(jí)上·全國(guó)·專題練習(xí))計(jì)算:;【答案】【分析】依據(jù)“拆項(xiàng)法”計(jì)算即可;【詳解】解:原式;【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,掌握“拆項(xiàng)法”是解答本題的關(guān)鍵.【變式5-3】(2023七年級(jí)上·全國(guó)·專題練習(xí))計(jì)算:【答案】【分析】依據(jù)“拆項(xiàng)法”計(jì)算即可.【詳解】解:原式【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,掌握“拆項(xiàng)法”是解答本題的關(guān)鍵.
題型06變序法【典例分析】【例6-1】(24-25七年級(jí)上·河北石家莊·開(kāi)學(xué)考試)計(jì)算:【答案】【分析】本題考查了有理數(shù)乘除的混合運(yùn)算,根據(jù)運(yùn)算法則將除法轉(zhuǎn)化為乘法,再利用乘法運(yùn)算律簡(jiǎn)便計(jì)算即可.【詳解】解:.【例6-2】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))用簡(jiǎn)便方法計(jì)算:;【答案】【分析】本題主要考查了有理數(shù)乘法,關(guān)鍵是熟記有理數(shù)乘法法則與運(yùn)算定律.根據(jù)有理數(shù)乘法法則與乘法的結(jié)合律進(jìn)行簡(jiǎn)便運(yùn)算;【詳解】解:;【例6-3】(24-25七年級(jí)上·全國(guó)·假期作業(yè))計(jì)算下面各題,能簡(jiǎn)算的要簡(jiǎn)算.【答案】60【分析】本題考查了分?jǐn)?shù)四則混合運(yùn)算,有理數(shù)乘法運(yùn)算律,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.分?jǐn)?shù)連乘能約分的先約分.【詳解】【變式演練】【變式6-1】(23-24七年級(jí)上·寧夏吳忠·階段練習(xí))計(jì)算:.【答案】4【分析】本題考查了有理數(shù)的加減混合運(yùn)算,關(guān)鍵是運(yùn)用加法的運(yùn)算律,結(jié)合律使運(yùn)算簡(jiǎn)便.利用乘法交換律計(jì)算即可.【詳解】解:【變式6-2】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))用簡(jiǎn)便方法計(jì)算:;【答案】【分析】本題主要考查了有理數(shù)乘法,熟記乘法法則是解題的關(guān)鍵.根據(jù)有理數(shù)的乘法交換律和結(jié)合律計(jì)算即可;【詳解】;【變式6-3】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))計(jì)算下列各式:;【答案】6【分析】本題考查有理數(shù)乘法運(yùn)算,解題的關(guān)鍵是掌握有理數(shù)乘法法則,注意計(jì)算時(shí)先確定積的符號(hào).先確定符號(hào),再用約分即可得答案;【詳解】
題型07逆用法【典例分析】【例7-1】(24-25七年級(jí)上·全國(guó)·假期作業(yè))計(jì)算:;【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算,逆用分配律簡(jiǎn)便計(jì)算是關(guān)鍵;逆用分配律把原式化為,再計(jì)算即可;【詳解】解:;【例7-2】(24-25七年級(jí)上·全國(guó)·假期作業(yè))計(jì)算:;【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算,逆用分配律簡(jiǎn)便計(jì)算是關(guān)鍵;逆用分配律把原式化為,再計(jì)算即可;【詳解】解:;【例7-3】(24-25七年級(jí)上·河北石家莊·開(kāi)學(xué)考試)計(jì)算:【答案】20190【分析】本題考查乘法分配律,運(yùn)用乘法分配律計(jì)算即可.【詳解】解:原式.【變式演練】【變式7-1】(24-25七年級(jí)上·全國(guó)·假期作業(yè))計(jì)算:.【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算,逆用分配律簡(jiǎn)便計(jì)算是關(guān)鍵;逆用乘法分配律計(jì)算即可;【詳解】解:;【變式7-2】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))用乘法運(yùn)算律,將下列各式進(jìn)行簡(jiǎn)便計(jì)算:.【答案】【分析】逆用乘法的分配律運(yùn)算即可.【詳解】解:;【變式7-3】(24-25七年級(jí)上·全國(guó)·隨堂練習(xí))用乘法運(yùn)算律,將下列各式進(jìn)行簡(jiǎn)便計(jì)算:.【答案】3【分析】逆用乘法的分配律運(yùn)算即可.【詳解】解:.
題型08觀察法【典例分析】【例8-1】(23-24七年級(jí)上·湖北武漢·期中)計(jì)算:【答案】0【分析】本題考查了含乘方的有理數(shù)的混合運(yùn)算,先算乘方,再算乘除,最后運(yùn)算加減,即可作答.正確掌握相關(guān)性質(zhì)內(nèi)容是解題的關(guān)鍵.【詳解】解:原式.【例8-2】(23-24七年級(jí)上·山西晉中·期中)計(jì)算:.【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算.注意計(jì)算的準(zhǔn)確性.利用有理數(shù)的混合運(yùn)算法則即可求解.【詳解】解:原式.【例8-3】(23-24七年級(jí)上·湖北黃岡·期中)【答案】【分析】本題考查有理數(shù)的混合運(yùn)算,涉及分?jǐn)?shù)的乘除運(yùn)算、乘方運(yùn)算、整數(shù)的加減運(yùn)算和的值等,掌握有理數(shù)的混合運(yùn)算法則,混合運(yùn)算順序,熟練運(yùn)用是解決問(wèn)題的關(guān)鍵.根據(jù)整式的加減乘除混合運(yùn)算法則,再由混合運(yùn)算順序,先乘方,再乘除,后加減,先將乘方運(yùn)算、的值求出來(lái)再運(yùn)算即可得到答案.【詳解】解:.【變式演練】【變式8-1】(23-24七年級(jí)上·廣東湛江·期中)計(jì)算:.【答案】6【分析】本題考查了有理數(shù)的混合運(yùn)算,先計(jì)算乘除,再加減即可,熟知計(jì)算法則是解題的關(guān)鍵。【詳解】解:原式,【變式8-2】(23-24七年級(jí)·安徽宿州·階段練習(xí))計(jì)算:.【答案】【分析】本題主要考查有理數(shù)的混合運(yùn)算,原式先計(jì)算乘方、負(fù)整數(shù)指數(shù)冪以及零指數(shù)冪,再計(jì)算乘法和除法,最后計(jì)算加減法即可.【詳解】解:.【變式8-3】(23-24七年級(jí)上·廣東湛江·期中)計(jì)算【答案】【分析】本題考查了有理數(shù)的混合運(yùn)算,先化簡(jiǎn)絕對(duì)值和計(jì)算括號(hào)里的,再?gòu)淖笸乙来芜M(jìn)行計(jì)算即可得;掌握有理數(shù)混合運(yùn)算的運(yùn)算法則和運(yùn)算順序是解題的關(guān)鍵.【詳解】解:原式.
題型09倒序相加法【典例分析】【例9-1】(23-24七年級(jí)上·遼寧朝陽(yáng)·期末)高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”,許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來(lái)非常煩瑣,且易出錯(cuò),聰明的小高斯經(jīng)過(guò)探索后,給出了下面漂亮的解答過(guò)程:解:設(shè),①則.②①②,得.(①②兩式左右兩端分別相加,左端等于,右端等于100個(gè)101的和)所以,.③所以.后來(lái)人們將小高斯的這種解答方法概括為“倒序相加法”請(qǐng)你運(yùn)用上述方法計(jì)算:一條沿途有n個(gè)站點(diǎn)的高鐵線上,單向行駛的“和諧號(hào)”列車(chē),需要印多少種車(chē)票.【答案】【分析】此題考查了規(guī)律型:數(shù)字的變化類(lèi),正確找出數(shù)字的變化規(guī)律是解題的關(guān)鍵.根據(jù)題意,一條沿途有n個(gè)站點(diǎn)的高鐵線上,則單向行駛的“和諧號(hào)”列車(chē)需要種車(chē)票,根據(jù)“倒序相加法”即可求解.【詳解】解:由題意得:需要種車(chē)票,設(shè)①,則②,①②,得.(①②兩式左右兩端分別相加,左端等于,右端等于個(gè)n的和),,,故答案為:.【例9-2】(22-23七年級(jí)上·湖南岳陽(yáng)·期末)計(jì)算:【答案】885【分析】原式整理結(jié)合后,計(jì)算即可得到結(jié)果.【詳解】解:設(shè),則,上下兩式相加得,所以,即【點(diǎn)睛】本題主要考查了有理數(shù)的加法,正確運(yùn)用倒序相加法是解答本題常用方法【例9-3】(20-21六年級(jí)上·山東威海·期中)【數(shù)學(xué)閱讀】高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來(lái)非常繁瑣,且易出錯(cuò).聰明的高斯經(jīng)過(guò)探索后,給出了下面的解答過(guò)程:解:設(shè)S=1+2+3+…+100,①則S=100+99+98+…+1.②①+②,得(即左右兩邊分別相加):2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×101.所以,S=.所以,1+2+3+…+100=5050.后來(lái)人們將高斯的這種解答方法概括為“倒序相加法”.【問(wèn)題解決】利用“倒序相加法”解答下面的問(wèn)題:(1)計(jì)算:1+2+3+…+101;(2)猜想:1+2+3+…+n=;(3)利用(2)中的結(jié)論,計(jì)算:1001+1002+…+2000.【答案】(1)5151(2)(3)【分析】(1)根據(jù)題目中的例子可以求得所求式子的值;(2)根據(jù)題目中的例子,可以寫(xiě)出猜想的結(jié)果;(3)根據(jù)(2)中結(jié)論即可得到結(jié)果.【詳解】(1)解:設(shè)S=1+2+3+…+100+101①則S=101+100+…+3+2+1
②①+②,2S=102+102+102+102+102+…+102=101×102.所以,S=,所以,1+2+3+…+100+101=5151;(2)解:解:設(shè)S=1+2+3+…+n①則S=n+…+3+2+1
②①+②,2S=(n+1)+…+(n+1)=(n+1)×n.猜想:1+2+3+…+n=,故答案為:;(3)解:1001+1002…+2000=.【點(diǎn)睛】本題考查數(shù)字的變化類(lèi)、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中數(shù)字的變化特點(diǎn),求出所求式子的值【變式演練】【變式9-1】(22-23七年級(jí)上·廣西南寧·期中)【問(wèn)題解決】利用“倒序相加法”解答下面的問(wèn)題:計(jì)算:_________;【答案】【分析】發(fā)現(xiàn)題目中數(shù)字的變化特點(diǎn),求出所求式子的值【詳解】解:設(shè)①則②①+②,.所以,,所以,,故答案為:;【點(diǎn)睛】本題考查數(shù)字的變化類(lèi)、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中數(shù)字的變化特點(diǎn),求出所求式子的值.【變式9-2】(七年級(jí)上·河北保定·期末)高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來(lái)非常繁瑣,且易出錯(cuò).聰明的小高斯經(jīng)過(guò)探索后,給出了下面漂亮的解答過(guò)程.解:設(shè)S=1+2+3+…+100
①則S=100+99+98+…+1
②①+②,得(即左右兩邊分別相加):2S=(1+100)+(2+99)+(3+98)+…+(100+1),=,=100×101,所以,S=③,所以,1+2+3+…+100=5050.后來(lái)人們將小高斯的這種解答方法概括為“倒序相加法”.請(qǐng)你利用“倒序相加法”解答下面的問(wèn)題.(1)計(jì)算:1+2+3+…+101;(2)請(qǐng)你觀察上面解答過(guò)程中的③式及你運(yùn)算過(guò)程中出現(xiàn)的類(lèi)似③式,猜想:1+2+3+…+n=;(3)至少用兩種方法計(jì)算:1001+1002+…+2000.方法1:方法2:【答案】(1)5151;(2),(3)見(jiàn)解析.【分析】(1)根據(jù)題目中的例子可以求得所求式子的值;(2)根據(jù)題目中的例子,可以寫(xiě)出猜想的結(jié)果;(3)根據(jù)題目中的例子可以用兩種方法求出所求式子的值【詳解】(1)設(shè)S=1+2+3+…+101①,則S=101+100+…+3+2+1②,①+②,得2S=102+102+102+…+102=101×102,∴S==5151,即1+2+3+…+101=5151;(2)猜想:1+2+3+…+n=,故答案為:;(3)方法一:1001+1002+…+2000=(1+2+3+…+2000)﹣(1+2+3+…+1000)=﹣=2001000﹣500500=1500500;方法2:設(shè)S=1001+1002+…+2000,則S=2000+1999+…+1001,兩式相加,得2S=1000×3001,則S==1500500,即1001+1002+…+2000=1500500.【點(diǎn)睛】本題考查數(shù)字的變化類(lèi)、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中數(shù)字的變化特點(diǎn),求出所求式子的值【變式9-3】(20-21七年級(jí)上·河北衡水·期中)高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來(lái)非常煩瑣,并且容易出錯(cuò).聰明的小高斯經(jīng)過(guò)探索后,給出了下面漂亮的解答過(guò)程解:設(shè),①則,②①+②,得.(兩式左右兩端分別相加,左端等于,右端等于100個(gè)101的和)∴,③∴.后來(lái)人們將小高斯的這種解答方法概括為“倒序相加法”.(1)請(qǐng)你運(yùn)用高斯的“倒序相加法”計(jì)算:;(2)請(qǐng)你認(rèn)真觀察上面解答過(guò)程中的③式及你運(yùn)算過(guò)程中出現(xiàn)類(lèi)似的③式,猜想________(用含的代數(shù)式表示);(3)計(jì)算:.【答案】(1)20100;(2);(3)2036160【分析】(1)先把1-200個(gè)數(shù)分別從小加到大,再?gòu)拇蠹拥叫?,然后兩列?shù)分別相加,可以得到200個(gè)201,算得200個(gè)201的和后再除以2即得1-200各數(shù)的和;(2)由(1)及題目例題的解析可得解答;(3)把101+102+103+?+2020看成1+2+3+?+2020的和減去1+2+3+?+100的和,再利用(2)所得代數(shù)式計(jì)算即可得到答案.【詳解】解:(1)設(shè)①則②,①+②,得,所以,,所以;(2)由(1)及題目例題的解析可得:;(3)=2041210-5050【點(diǎn)睛】本題考查數(shù)字類(lèi)規(guī)律探索,通過(guò)閱讀題目材料和例題總結(jié)出計(jì)算規(guī)律,再把所得規(guī)律應(yīng)用于新問(wèn)題的解決是解題關(guān)鍵
題型10倒數(shù)法【典例分析】【例10-1】(23-24七年級(jí)上·陜西渭南·階段練習(xí))用簡(jiǎn)便方法計(jì)算:.【答案】【分析】先將除法轉(zhuǎn)化為乘法,然后根據(jù)乘法分配律進(jìn)行計(jì)算即可求解.【詳解】解:.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握有理數(shù)的運(yùn)算法則以及運(yùn)算順序是解題的關(guān)鍵.【例10-2】(23-24七年級(jí)上·安徽滁州·階段練習(xí))計(jì)算:.【答案】.【分析】根據(jù)有理數(shù)的運(yùn)算順序,計(jì)算原式的倒數(shù),即可得出答案.【詳解】解:沒(méi)有除法分配律,故解法一錯(cuò)誤;(2)原式的倒數(shù)為:,所以原式【點(diǎn)睛】本題考查了有理數(shù)的除法,熟練掌握有理數(shù)的運(yùn)算法則是解決本題的關(guān)鍵.【例10-3】(23-24七年級(jí)上·湖南湘西·期末)數(shù)學(xué)老師為了優(yōu)化同學(xué)們的運(yùn)算思維,提高數(shù)學(xué)運(yùn)算能力,復(fù)習(xí)有理數(shù)綜合運(yùn)算時(shí),布置了一道有意思的計(jì)算題:請(qǐng)用不同解法計(jì)算劉聰和他的小伙伴選擇常規(guī)解法:張明開(kāi)動(dòng)腦筋,經(jīng)過(guò)觀察算式特點(diǎn),和同學(xué)們深入分析、探究,又找到了下面這種解法:原式的倒數(shù):所以,原式(1)請(qǐng)比較劉聰和張明兩位同學(xué)的解法,你喜歡哪位同學(xué)的解法?為什么?(2)請(qǐng)選擇你喜歡的解法計(jì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲活動(dòng)教案模板
- 2024年深海探測(cè)技術(shù)項(xiàng)目信托資金借款合同3篇
- 一年級(jí)語(yǔ)文園地五教案
- 2025年直流電源項(xiàng)目提案報(bào)告模稿
- 公文報(bào)告的范文
- 財(cái)務(wù)經(jīng)理述職報(bào)告
- 繪畫(huà)工作總結(jié)
- 結(jié)構(gòu)工程師工作總結(jié)(12篇)
- 學(xué)生會(huì)辭職報(bào)告(集合15篇)
- 簡(jiǎn)短的求職自我介紹-
- 2025年上半年河南省西峽縣部分事業(yè)單位招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案-1
- 深交所創(chuàng)業(yè)板注冊(cè)制發(fā)行上市審核動(dòng)態(tài)(2020-2022)
- 手術(shù)室護(hù)理組長(zhǎng)競(jìng)聘
- 電力系統(tǒng)繼電保護(hù)試題以及答案(二)
- 小學(xué)生防打架斗毆安全教育
- 2024年全國(guó)統(tǒng)一高考英語(yǔ)試卷(新課標(biāo)Ⅰ卷)含答案
- 《應(yīng)用化學(xué)基礎(chǔ)》試卷
- 學(xué)生請(qǐng)假外出審批表
- 疼痛診療與康復(fù)
- T∕ACSC 01-2022 輔助生殖醫(yī)學(xué)中心建設(shè)標(biāo)準(zhǔn)(高清最新版)
- 新版【處置卡圖集】施工類(lèi)各崗位應(yīng)急處置卡(20頁(yè))
評(píng)論
0/150
提交評(píng)論