山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題【含答案】_第1頁
山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題【含答案】_第2頁
山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題【含答案】_第3頁
山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題【含答案】_第4頁
山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題【含答案】_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁山東省東營市勝利第二中學2024年數(shù)學九上開學達標測試試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)在某市舉辦的垂釣比賽上,5名垂釣愛好者參加了比賽,比賽結(jié)束后,統(tǒng)計了他們各自的釣魚條數(shù),成績?nèi)缦拢?,5,1,6,1.則這組數(shù)據(jù)的中位數(shù)是()A.5B.6C.7D.12、(4分)若式子有意義,則x的取值范圍是()A. B. C. D.3、(4分)下列選項中,不能判定四邊形ABCD是平行四邊形的是A., B.,C., D.,4、(4分)一次函數(shù)的圖象不經(jīng)過哪個象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)用配方法解方程x2+3x+1=0,經(jīng)過配方,得到()A.(x+)2= B.(x+)2=C.(x+3)2=10 D.(x+3)2=86、(4分)如圖,將菱形豎直位置的對角線向右平移acm,水平位置的對角線向上平移bcm,平移后菱形被分成四塊,最大一塊與最小一塊的面積和記為,其余兩塊的面積和為,則與的差是()A.a(chǎn)bcm2 B.2abcm2 C.3abcm2 D.4abcm27、(4分)下列各式從左到右,是因式分解的是().A.(y-1)(y+1)=-1 B.C.(x-2)(x-3)=(3-x)(2-x) D.8、(4分)若解方程會產(chǎn)生增根,則m等于()A.-10 B.-10或-3 C.-3 D.-10或-4二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于點H,則DH=_____.10、(4分)分解因式:.11、(4分)如圖,在平行四邊形中,,.以點為圓心,適當長為半徑畫弧,交于點,交于點,再分別以點,為圓心,大于的長為半徑畫弧,兩弧相交于點,射線交的延長線于點,則的長是____________.12、(4分)已知點(-1,y1),(2,y2),(3,y3)在反比例函數(shù)y=的圖象上,則用“<”連接y1,y2,y3的結(jié)果為_______.13、(4分)如圖,是菱形的對角線上一點,過點作于點.若,則點到邊的距離為______.三、解答題(本大題共5個小題,共48分)14、(12分)已知一次函數(shù)的圖象經(jīng)過點(-2,-7)和(2,5),求該一次函數(shù)解析式并求出函數(shù)圖象與y軸的交點坐標.15、(8分)已知一次函數(shù)y=kx﹣4,當x=1時,y=﹣1.(1)求此一次函數(shù)的解析式;(1)將該函數(shù)的圖象向上平移3個單位,求平移后的圖象與x軸的交點的坐標.16、(8分)解下列不等式(組),并將其解集分別表示在數(shù)軸上.(1);(2)17、(10分)觀察下面的變形規(guī)律:,解答下面的問題:(1)若為正整數(shù),請你猜想;(2)計算:.18、(10分)綠谷商場“家電下鄉(xiāng)”指定型號冰箱、彩電的進價和售價如下表所示:(1)按國家政策,農(nóng)民購買“家電下鄉(xiāng)”產(chǎn)品可享受售價13%的政府補貼.農(nóng)民田大伯到該商場購買了冰箱、彩電各一臺,可以享受多少元的政府補貼?(2)為滿足農(nóng)民需求,商場決定用不超過85000元采購冰箱、彩電共40臺,且冰箱的數(shù)量不少于彩電數(shù)量的.①請你幫助該商場設(shè)計相應的進貨方案;②哪種進貨方案商場獲得利潤最大(利潤=售價-進價),最大利潤是多少?B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)寫出一個圖象經(jīng)過點(1,﹣2)的函數(shù)的表達式:_____.20、(4分)平行四邊形的一個內(nèi)角平分線將該平行四邊形的一邊分為2cm和3cm兩部分,則該平行四邊形的周長為______.21、(4分)如圖,在邊長為2的正方形ABCD中,點E是邊AD中點,點F在邊CD上,且FE⊥BE,設(shè)BD與EF交于點G,則△DEG的面積是___22、(4分)已知一個反比例函數(shù)的圖象與正比例函數(shù)的圖象有交點,請寫出一個滿足上述條件的反比例函數(shù)的表達式:__________________.23、(4分)__________.二、解答題(本大題共3個小題,共30分)24、(8分)傳統(tǒng)節(jié)日“春節(jié)”到來之際,某商店老板以每件60元的價格購進一批商品,若以單價80元銷售,每月可售出300件.調(diào)查表明:單價每上漲1元,該商品每月的銷售量就減少10件.(1)請寫出每月銷售該商品的利潤y(元)與單價x(元)間的函數(shù)關(guān)系式;(2)單價定為多少元時,每月銷售商品的利潤最大?最大利潤為多少?25、(10分)如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.(1)當t為何值時,四邊形ABQP是矩形;(2)當t為何值時,四邊形AQCP是菱形;(3)分別求出(2)中菱形AQCP的周長和面積.26、(12分)如圖所示,在菱形ABCD中,AC是對角線,CD=CE,連接DE.(1)若AC=16,CD=10,求DE的長.(2)G是BC上一點,若GC=GF=CH且CH⊥GF,垂足為P,求證:2DH=CF.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】把這數(shù)從小到大排列為:4,5,6,1,1,最中間的數(shù)是6,則這組數(shù)據(jù)的中位數(shù)是6,故選B.2、C【解析】

根據(jù)二次根式的被開方數(shù)是非負數(shù)列出不等式x-1≥0,通過解該不等式即可求得x的取值范圍.【詳解】解:根據(jù)題意,得x-1≥0,

解得,x≥1.

故選:C.此題考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.3、C【解析】

根據(jù)平行四邊形的判定方法逐項進行判斷即可.【詳解】A、由,可以判斷四邊形ABCD是平行四邊形;故本選項不符合題意;B、由,可以判斷四邊形ABCD是平行四邊形;故本選項不符合題意;C、由,不能判斷四邊形ABCD是平行四邊形,有可能是等腰梯形;故本選項符合題意;D、由,可以判斷四邊形ABCD是平行四邊形;故本選項不符合題意,故選C.本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.4、A【解析】

根據(jù)一次函數(shù)的性質(zhì)一次項系數(shù)小于0,則函數(shù)一定經(jīng)過二,四象限,常數(shù)項-1<0,則一定與y軸負半軸相交,據(jù)此即可判斷.【詳解】解:∵k=-1<0,b=-1<0∴一次函數(shù)的圖象經(jīng)過二、三、四象限一定不經(jīng)過第一象限.故選:A.本題主要考查了一次函數(shù)的性質(zhì),對性質(zhì)的理解一定要結(jié)合圖象記憶.5、B【解析】

把常數(shù)項1移項后,在左右兩邊同時加上一次項系數(shù)3的一半的平方,由此即可求得答案.【詳解】∵x2+3x+1=0,∴x2+3x=﹣1,∴x2+3x+()2=﹣1+()2,即(x+)2=,故選B.本題考查了解一元二次方程--配方法.用配方法解一元二次方程的步驟:(1)形如x2+px+q=0型:第一步移項,把常數(shù)項移到右邊;第二步配方,左右兩邊加上一次項系數(shù)一半的平方;第三步左邊寫成完全平方式;第四步,直接開方即可.(2)形如ax2+bx+c=0型,方程兩邊同時除以二次項系數(shù),即化成x2+px+q=0,然后配方.6、D【解析】

作HK關(guān)于AC的對稱線段GL,作FE關(guān)于BD的對稱線段IJ,由對稱性可知,圖中對應顏色的部分面積相等,即可求解.【詳解】解:如圖,作HK關(guān)于AC的對稱線段GL,作FE關(guān)于BD的對稱線段IJ,

由對稱性可知,圖中對應顏色的部分面積相等,

∴s1與s2的差=4SOMNP,

∵OM=a,ON=b,

∴4SOMNP=4ab,

故選:D.本題考查菱形的性質(zhì),圖形的對稱性;通過作軸對稱圖形,將面積進行轉(zhuǎn)化是解題的關(guān)鍵.7、D【解析】

解:A、是多項式乘法,不是因式分解,故本選項錯誤;B、結(jié)果不是積的形式,故本選項錯誤;C、不是對多項式變形,故本選項錯誤;D、運用完全平方公式分解x2-4x+4=(x-2)2,正確.故選D.8、D【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程有增根,確定出x的值,代入整式方程求出m的值即可.【詳解】去分母得:2x-2-5x-5=m,即-3x-7=m,

由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,

把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,

故選:D.考查了分式方程的增根,增根確定后可按如下步驟進行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.二、填空題(本大題共5個小題,每小題4分,共20分)9、【解析】分析:本題考查的是菱形的面積問題,菱形的面積即等于對角線積的一半,也等于底乘以高.解析:∵四邊形ABCD是菱形,AC=8,DB=6,∴菱形面積為24,設(shè)AC與BD相較于點O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因為菱形面積為AB×DH=24,∴DH=.故答案為.10、.【解析】

先把式子寫成x2-22,符合平方差公式的特點,再利用平方差公式分解因式.【詳解】x2-4=x2-22=(x+2)(x-2).故答案為.此題考查的是利用公式法因式分解,因式分解的步驟為:一提公因式;二看公式.11、3【解析】

根據(jù)角平分線的作圖和平行四邊形的性質(zhì)以及等腰三角形的判定和性質(zhì)解答即可.【詳解】由作圖可知:BH是∠ABC的角平分線,

∴∠ABG=∠GBC,

∵平行四邊形ABCD,

∴AD∥BC,

∴∠AGB=∠GBC,

∴∠ABG=∠AGB,

∴AG=AB=4,

∴GD=AD=AG=7-4=3,

∵平行四邊形ABCD,

∴AB∥CD,

∴∠H=∠ABH=∠AGB,

∵∠AGB=∠HGD,

∴∠H=∠HGD,

∴DH=GD=3,

故答案為:3.此題考查角平分線的做法,平行四邊形的性質(zhì),熟練根據(jù)角平分線的性質(zhì)得出∠ABG=∠GBC是解題關(guān)鍵.12、y2<y3<y1【解析】試題分析:∵反比例函數(shù)y=中,﹣k2﹣1<0,∴函數(shù)圖象的兩個分式分別位于二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵﹣1<0,∴點A(﹣1,y1)位于第二象限,∴y1>0;∵0<2<3,∴B(1,y2)、C(2,y3)在第四象限,∵2<3,∴y2<y3<0,∴y2<y3<y1.考點:反比例函數(shù)圖象上點的坐標特征.13、4【解析】

首先根據(jù)菱形的性質(zhì),可得出∠ABD=∠CBD,然后根據(jù)角平分線的性質(zhì),即可得解.【詳解】解:∵四邊形ABCD為菱形,BD為其對角線∴∠ABD=∠CBD,即BD為角平分線∴點E到邊AB的距離等于EF,即為4.此題主要考查菱形和角平分線的性質(zhì),熟練運用,即可解題.三、解答題(本大題共5個小題,共48分)14、y=3x-1,函數(shù)圖象與y軸的交點坐標(0,-1).【解析】

設(shè)一次函數(shù)解析式為y=kx+b,把一次函數(shù)圖象上兩個已知點的坐標代入得到,然后解方程組求出k、b即可得到一次函數(shù)解析式;計算出一次函數(shù)當x=0時所對應的函數(shù)值即可這個一次函數(shù)的圖象與y軸的交點坐標.【詳解】設(shè)該一次函數(shù)解析式為把點(-2,-7)和(2,5)代入得:解得當x=0時,y=-1∴交點坐標為(0,-1)此題考查一次函數(shù)圖象上點的坐標特征,待定系數(shù)法求一次函數(shù)解析式,解題關(guān)鍵在于利用待定系數(shù)法求解析式.15、(1)y=x﹣4;(1)(1,0)【解析】

(1)根據(jù)待定系數(shù)法求出函數(shù)的解析式;(1)利用一次函數(shù)的平移的性質(zhì):上加下減,左加右減進行變形即可.【詳解】(1)把x=1,y=-1代入y=kx-4可得1k-4=-1解得k=1即一次函數(shù)的解析式為y=x-4(1)根據(jù)一次函數(shù)的平移的性質(zhì),可得y=x-4+3=x-1即平移后的一次函數(shù)的解析式為y=x-1因為與x軸的交點y=0可得x=1所以與x軸的交點坐標為(1,0).此題主要考查了一次函數(shù)的圖像與性質(zhì),關(guān)鍵是利用待定系數(shù)法求出函數(shù)的解析式.16、(1),數(shù)軸表示見解析(2)x>3,數(shù)軸表示見解析【解析】

(1)先去分母,再去括號,移項、合并同類項,把x的系數(shù)化為1,再在數(shù)軸上表示出來即可;(2)分別求出各不等式的解集,再求出其公共解集,在數(shù)軸上表示出來即可.【詳解】解:(1)去分母得:,去括號得:,移項合并得:,系數(shù)化為1得:,在數(shù)軸上表示為:(2),由①得,x>3,由②得,x≥1,故不等式組的解集為:x>3,在數(shù)軸上表示為:本題考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.17、(1);(2).【解析】

(1)根據(jù)所給算式寫出結(jié)論即可;(2)根據(jù)(1)中規(guī)律把括號內(nèi)變形,然后合并同類二次根式,再根據(jù)平方差公式計算.【詳解】解:(1)∵,,,,∴;原式.本題考查了二次根式的混合運算,根據(jù)所給算式總結(jié)出是解答本題的關(guān)鍵.18、(1)572元;(2)①見解析;②3620元.【解析】

(1)總售價(冰箱總售價+彩電總售價),根據(jù)此關(guān)系計算即可;(2)冰箱總價+彩電總價,冰箱的數(shù)量彩電數(shù)量的,先根據(jù)此不等式求得的取值范圍.總利潤為:冰箱總利潤+彩電總利潤,然后根據(jù)自變量的取值選取即可.【詳解】(1),答:可以享受政府572元的補貼;(2)①設(shè)冰箱采購x臺,則彩電購買(40-x)臺,,解得,為正整數(shù)、、,該商場共有3種進貨方案.方案一:冰箱購買臺,彩電購買臺;方案二:冰箱購買臺,彩電購買臺;方案三:冰箱購買臺,彩電購買臺.②設(shè)商場獲得總利潤元,根據(jù)題意得,,隨的增大而增大,當時,元答:方案三商場獲得利潤最大,最大利潤是元.解決本題的關(guān)鍵是讀懂題意,找到所求量的等量關(guān)系,及符合題意的不等關(guān)系式.要學會利用函數(shù)的單調(diào)性結(jié)合自變量的取值范圍求得利潤的最大值.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】

設(shè)y=kx,把點(1,﹣2)代入即可(答案不唯一).【詳解】設(shè)y=kx,把點(1,﹣2)代入,得k=-2,∴(答案不唯一).故答案為:.本題考查了待定系數(shù)法求一次函數(shù)解析式,利用待定系數(shù)法求函數(shù)解析式的一般步驟:①先設(shè)出函數(shù)解析式的一般形式,如求一次函數(shù)的解析式時,先設(shè)y=kx+b(k≠0);②將已知點的坐標代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;③解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.20、14cm或16cm【解析】試題分析:根據(jù)題意畫出圖形,由平行四邊形得出對邊平行,又由角平分線可以得出△ABE為等腰三角形,然后分別討論BE=2cm,CE=3cm或BE=3cm,CE=2cm,繼而求得答案.解:如圖,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠DAE=∠AEB,∵AE為角平分線,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①當AB=BE=2cm,CE=3cm時,則周長為14cm;②當AB=BE=3cm時,CE=2cm,則周長為16cm.故答案為14cm或16cm.考點:平行四邊形的性質(zhì).21、【解析】

過點G作GM⊥AD于M,先證明△ABE∽△DEF,利用相似比計算出DF=,再利用正方形的性質(zhì)判斷△DGM為等腰直角三角形得到DM=MG,設(shè)DM=x,則MG=x,EM=1-x,然后證明△EMG∽△EDF,則利用相似比可計算出GM,再利用三角形面積公式計算S△DEG即可.【詳解】解:過點G作GM⊥AD于M,如圖,∵FE⊥BE,∴∠AEB+∠DEF=90°,而∠AEB+∠ABE=90°,∴∠ABE=∠DEF,而∠A=∠EDF=90°,∴△ABE∽△DEF,∴AB:DE=AE:DF,即2:1=1:DF,∴DF=,∵四邊形ABCD為正方形,∴∠ADB=45°,∴△DGM為等腰直角三角形,∴DM=MG,設(shè)DM=x,則MG=x,EM=1-x,∵MG∥DF,∴△EMG∽△EDF,∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,∴S△DEG=×1×=,故答案為.本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).熟練運用相似比計算線段的長.22、【解析】

寫一個經(jīng)過一、三象限的反比例函數(shù)即可.【詳解】反比例函數(shù)與有交點.故答案為:.本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.23、【解析】

把變形為,逆用積的乘方法則計算即可.【詳解】原式===.故答案為:.本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.二、解答題(本大題共3個小題,共30分)24、(1)y=-10x2+100x+6000(0≤x≤30);(2)單價定為5元時,每月銷售商品的利潤最大,最大利潤為6250元.【解析】試題分析:(1)單價上漲x(元),由單價每上漲1元,該商品每月的銷量就減少10件得到銷售量為(300-10x)件,根據(jù)利潤等于銷售價減成本得到每件的利潤為(80-60+x),因此每月銷售該商品的利潤y等于月銷售量×每件的利潤;(2)把(1)得到的函數(shù)關(guān)系式進行配方得到y(tǒng)=-10(x-5)2+6250,然后根據(jù)二次函數(shù)的最值問題易得到單價定為多少元時,每月銷售該商品的利潤最大.試題解析:(1)y=(80-60+x)(300-10x)=-10x2+100x+6000(0≤x≤30);(2)y=-10x2+100x+6000=-10(x-5)2+6250∵a=-10<0,∴當x=5時,y有最大值,其最大值為6250,即:單價定為5元時,每月銷售商品的利潤最大,最大利潤為6250元.考點:二次函數(shù)的應用.25、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周長為:15cm,面積為:(cm2).【解析】

(1)當四邊形ABQP是矩形時,BQ=AP,據(jù)此求得t的值;

(2)當四邊形AQCP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論