版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省富平縣2025屆高二上數(shù)學期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據(jù)莖葉圖能得到的統(tǒng)計結論的編號為()A.①③ B.①④C.②③ D.②④2.函數(shù)在處有極值為,則的值為()A. B.C. D.3.已知一個乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來高度的倍,則當它第8次著地時,經過的總路程是()A. B.C. D.4.直線的傾斜角為()A.0 B.C. D.5.直線與橢圓交于兩點,以線段為直徑的圓恰好經過橢圓的左焦點,則此橢圓的離心率為()A B.C. D.6.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°7.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件8.函數(shù)的部分圖像為()A. B.C. D.9.若直線先向右平移一個單位,再向下平移一個單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-810.已知雙曲線的右焦點為,漸近線為,,過的直線與垂直,且交于點,交于點,若,則雙曲線的離心率為()A. B.C.2 D.11.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點到平面的距離是()A. B.C. D.12.一質點從出發(fā),做勻速直線運動,每秒的速度為秒后質點所處的位置為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)定義域為___________.14.已知數(shù)列中,,,則_______.15.曲線在處的切線斜率為___________.16.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線經過拋物線的焦點,且與拋物線相交于兩點.(1)若直線的斜率為1,求;(2)若,求直線的方程.18.(12分)設函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調區(qū)間.19.(12分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標準方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.20.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關于的方程在上有解,求的取值范圍.21.(12分)已知,命題p:對任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍22.(10分)一款小游戲的規(guī)則如下:每盤游戲都需拋擲骰子三次,出現(xiàn)一次或兩次“6點”獲得15分,出現(xiàn)三次“6點”獲得120分,沒有出現(xiàn)“6點”則扣除12分(即獲得-12分)(Ⅰ)設每盤游戲中出現(xiàn)“6點”的次數(shù)為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析解釋上述現(xiàn)象
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B2、B【解析】根據(jù)函數(shù)在處有極值為,由,求解.【詳解】因為函數(shù),所以,所以,,解得a=6,b=9,=-3,故選:B3、C【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】從第1次著地到第2次著地經過的路程為,第2次著地到第3次著地經過的路程為,組成以為首項,公比為的等比數(shù)列,所以第1次著地到第8次著地經過的路程為,所以經過的總路程是.故答案為:C.4、D【解析】根據(jù)斜率與傾斜角的關系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.5、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關系,則橢圓離心率可求.【詳解】設橢圓的左右焦點分別為,如下圖:因為以線段為直徑的圓恰好經過橢圓的左焦點,所以且,所以,又因為的傾斜角為,所以,所以為等邊三角形,所以,所以,因為,所以,所以,所以,所以,故選:D.6、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當∠EGF=60°時,∠FEG=60°,當∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B7、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.8、D【解析】先判斷奇偶性排除C,再利用排除B,求導判斷單調性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當時,,,當時,,所以函數(shù)在區(qū)間上單調遞減,排除A.故選:D9、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點到直線距離公式列式計算作答.【詳解】將直線先向右平移一個單位,再向下平移一個單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A10、C【解析】由題設易知是的中垂線,進而可得,結合雙曲線參數(shù)關系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.11、C【解析】利用面面垂直性質結合已知尋找兩兩垂直的三條直線建立空間直角坐標系,用向量法可解.【詳解】取的中點O,連接OB,過O在平面ACDE面內作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O為原點,OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標系則,,,設平面ABD的單位法向量,,由解得取,則∴點C到平面ABD的距離.故選:C12、A【解析】利用空間向量的線性運算即可求解.【詳解】2秒后質點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運算,考查了基本知識掌握的情況以及學生的綜合素養(yǎng),屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)函數(shù)定義域的求法,即可求解.【詳解】解:,解得,故函數(shù)的定義域為:.故答案為:.14、【解析】根據(jù)遞推公式一一計算即可;【詳解】解:因為,所以,,,故答案為:15、##【解析】首先求得的導數(shù),由導數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導數(shù)為,所以可得在處的切線斜率,故答案為:16、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價命題判斷.【詳解】因為命題“若,則”是真命題,且逆否命題與原命題是等價命題,所以它的逆否命題是真命題,故答案為:真命題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)8(2)【解析】(1)設,由,進而結合拋物線的定義,將點到焦點的距離轉化為到準線的距離,最后求得答案;(2)由,所以,設出直線方程并代入拋物線方程,進而結合根與系數(shù)的關系求得答案.【小問1詳解】設,拋物線的準線方程為:,因為,由拋物線定義可知,.直線,代入拋物線方程化簡得:,則,所以.【小問2詳解】設,代入拋物線方程化簡得:,所以,因為,所以,于是則直線的方程為:.18、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導,切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率.(2)第一步定義域,第二步求導,第三步令導數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調遞減;②當時,令,解得:,列表得:x-0+單調遞減極小值單調遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當時,在單調遞減;當時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導函數(shù)中得切線問題第一步求導,第二步列切點在曲線,切點在切線,切點處的導數(shù)值為切線斜率這三個方程,可解切線相關問題.19、(1);(2)或.【解析】(1)由條件得,再結合,可求得橢圓方程;(2)由題意設直線l:x=my+4,設M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關于的方程,進而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當=(24m)2-4(3m2+4)×36>0時,有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或20、(1)(2)【解析】(1)求,由條件可得,得出關于的方程組,求解可得;(2)令,注意,所以在具有單調性時,則方程無解,求,對分類討論,求出單調區(qū)間,結合函數(shù)值的變化趨勢,即可求得結論.【詳解】解:(1),因為,所以,解得,,所以.(2)令,則.令,則在上單調遞增.當,即時,,所以單調遞增,又,所以;當,即時,則存在,使得,所以函數(shù)在上單調遞減,在上單調遞增,又,則.當時,,所以在上有解.綜上,的取值范圍為.【點睛】本題考查導數(shù)的幾何意義求參數(shù),考查導數(shù)的綜合應用,涉及到單調區(qū)間、函數(shù)零點的問題,考查分類討論思想,屬于較難題.21、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據(jù)題設可得真或真,后者可用參變分離求出的取值范圍,結合(1)可求的取值范圍.【小問1詳解】當p為真命題時,當時,不等式顯然成立;當時,解得,故a取值范圍為.【小問2詳解】當q為真命題時,問題等價于存在,使得不等式成立,即,∵,當且僅當x=1時等號成立,∴因為為真命題,所以真或真,故a的取值范圍是22、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據(jù)每次拋擲骰子,出現(xiàn)“6點”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版龍門吊設備維修配件供應與庫存管理合同4篇
- 影視作品2025年度海外發(fā)行合同3篇
- 2025年智能交通系統(tǒng)建設投資合同2篇
- 二手房買賣合同按揭貸款范文(2024版)
- 二零二五年度國際文化交流捐贈協(xié)議3篇
- 二零二五年度城市排水管網(wǎng)疏浚承包合同樣本4篇
- 2025年新能源汽車電池更換服務合同模板4篇
- 2025年新型商業(yè)空間租賃合同3篇
- 2024游艇品牌代理銷售合作協(xié)議43篇
- 2025年文化展覽館租賃與展覽活動承包合同范本4篇
- 廣東省佛山市2025屆高三高中教學質量檢測 (一)化學試題(含答案)
- 人教版【初中數(shù)學】知識點總結-全面+九年級上冊數(shù)學全冊教案
- 2024-2025學年人教版七年級英語上冊各單元重點句子
- 公司結算資金管理制度
- 2024年小學語文教師基本功測試卷(有答案)
- 項目可行性研究報告評估咨詢管理服務方案1
- 5歲幼兒數(shù)學練習題
- 新版藥品批發(fā)企業(yè)質量管理體系文件大全
- 項目管理實施規(guī)劃-無錫萬象城
- 浙大一院之江院區(qū)就診指南
- 離婚協(xié)議書電子版下載
評論
0/150
提交評論