駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題含解析_第1頁
駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題含解析_第2頁
駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題含解析_第3頁
駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題含解析_第4頁
駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

駐馬店市重點中學2025屆高一上數(shù)學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“兩個三角形相似”是“兩個三角形三邊成比例”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.設是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則3.若函數(shù)的一個正數(shù)零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:那么方程的一個近似根(精確度)可以是()A. B.C. D.4.設,若,則的最小值為A. B.C. D.5.“是”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要6.定義在上的偶函數(shù)的圖象關于直線對稱,當時,.若方程且根的個數(shù)大于3,則實數(shù)的取值范圍為()A. B.C. D.7.下列函數(shù)在其定義域內是增函數(shù)的是()A. B.C. D.8.已知的值域為,那么的取值范圍是()A. B.C. D.9.下列函數(shù)中,與的奇偶性相同,且在上單調性也相同的是()A. B.C. D.10.已知函數(shù)為上偶函數(shù),且在上的單調遞增,若,則滿足的的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為______12.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);

②是該函數(shù)的一個單調遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關于點對稱;⑤該函數(shù)值域為.其中正確命題的編號為______13.設,向量,,若,則_______14.已知扇形的圓心角為,扇形的面積為,則該扇形的弧長為____________.15.已知函數(shù),則____16.已知正四棱錐的高為4,側棱長為3,則該棱錐的側面積為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱軸和對稱中心;(3)若,,求的值18.(1)已知方程,的值(2)已知是關于的方程的兩個實根,且,求的值19.已知函數(shù),函數(shù)的圖像與的圖像關于對稱.(1)求的值;(2)若函數(shù)在上有且僅有一個零點,求實數(shù)k取值范圍;(3)是否存在實數(shù)m,使得函數(shù)在上的值域為,若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.20.如圖所示,已知平面平面,平面平面,,求證:平面.21.假設有一套住房從2002年的20萬元上漲到2012年的40萬元.下表給出了兩種價格增長方式,其中是按直線上升的房價,是按指數(shù)增長的房價,是2002年以來經過的年數(shù).05101520萬元2040萬元2040(1)求函數(shù)的解析式;(2)求函數(shù)的解析式;(3)完成上表空格中的數(shù)據(jù),并在同一直角坐標系中畫出兩個函數(shù)的圖像,然后比較兩種價格增長方式的差異.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)相似三角形性質,結合充分條件、必要條件的判定方法,即可求解.【詳解】根據(jù)相似三角形的性質得,由“兩個三角形相似”可得到“兩個三角形三邊成比例”,即充分性成立;反之:由“兩個三角形三邊成比例”可得到“兩個三角形相似”,即必要性成立,所以“兩個三角形相似”是“兩個三角形三邊成比例”的充分必要條件.故選:C.2、A【解析】本道題目分別結合平面與平面平行判定與性質,平面與平面平行垂直判定與性質,即可得出答案.【詳解】A選項,結合一條直線與一平面垂直,則過該直線的平面垂直于這個平面,故正確;B選項,平面垂直,則位于兩平面的直線不一定垂直,故B錯誤;C選項,可能平行于與相交線,故錯誤;D選項,m與n可能異面,故錯誤【點睛】本道題目考查了平面與平面平行判定與性質,平面與平面平行垂直判定與性質,發(fā)揮空間想象能力,找出選項的漏洞,即可.3、C【解析】根據(jù)二分法求零點的步驟以及精確度可求得結果.【詳解】因為,所以,所以函數(shù)在內有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內有零點,因為,所以不滿足精確度;因為,,所以函數(shù)在內有零點,因為,所以滿足精確度,所以方程的一個近似根(精確度)是區(qū)間內的任意一個值(包括端點值),根據(jù)四個選項可知選C.故選:C【點睛】關鍵點點睛:掌握二分法求零點的步驟以及精確度的概念是解題關鍵.4、D【解析】依題意,,根據(jù)基本不等式,有.5、A【解析】根據(jù)充分必要條件的定義判斷【詳解】若x=1,則x2-4x+3=0,是充分條件,若x2-4x+3=0,則x=1或x=3,不是必要條件.故選:A.6、D【解析】由題設,可得解析式且為周期為4的函數(shù),再將問題轉化為與交點個數(shù)大于3個,討論參數(shù)a判斷交點個數(shù),進而畫出和的圖象,應用數(shù)形結合法有符合題設,即可求范圍.【詳解】由題設,,即,所以是周期為4的函數(shù),若,則,故,所以,要使且根的個數(shù)大于3,即與交點個數(shù)大于3個,又恒過,當時,在上,在上且在上遞減,此時與只有一個交點,所以.綜上,、的圖象如下所示,要使交點個數(shù)大于3個,則,可得.故選:D【點睛】關鍵點點睛:根據(jù)已知條件分析出的周期性,并求出上的解析式,將問題轉化為兩個函數(shù)的交點個數(shù)問題,結合對數(shù)函數(shù)的性質分析a的范圍,最后根據(jù)交點個數(shù)情況,應用數(shù)形結合進一步縮小參數(shù)的范圍.7、A【解析】函數(shù)在定義域內單調遞減,排除B,單調區(qū)間不能用并集連接,排除CD.【詳解】定義域為R,且在定義域上單調遞增,滿足題意,A正確;定義域為,在定義域內是減函數(shù),B錯誤;定義域為,而在為單調遞增函數(shù),不能用并集連接,C錯誤;同理可知:定義域為,而在區(qū)間上單調遞增,不能用并集連接,D錯誤.故選:A8、C【解析】先求得時的值域,再根據(jù)題意,當時,值域最小需滿足,分析整理,即可得結果.【詳解】當,,所以當時,,因為的值域為R,所以當時,值域最小需滿足所以,解得,故選:C【點睛】本題考查已知函數(shù)值域求參數(shù)問題,解題要點在于,根據(jù)時的值域,可得時的值域,結合一次函數(shù)的圖像與性質,即可求得結果,考查分析理解,計算求值的能力,屬基礎題.9、C【解析】先求得函數(shù)的奇偶性和單調性,結合選項,利用函數(shù)的性質和單調性的定義,逐項判定,即可求解.【詳解】由題意,函數(shù)滿足,所以函數(shù)為偶函數(shù),當時,可得,結合指數(shù)函數(shù)的性質,可得函數(shù)為單調遞增函數(shù),對于A中,函數(shù)為奇函數(shù),不符合題意;對于B中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意;對于C中,函數(shù)的定義域為,且滿足,所以函數(shù)為偶函數(shù),設,且時,則,因為且,所以,所以,即,所以在為增函數(shù),符合題意;對于D中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意.故選:C.10、B【解析】根據(jù)偶函數(shù)的性質和單調性解函數(shù)不等式【詳解】是偶函數(shù),.所以不等式化為,又在上遞增,所以,或,即或故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù),并結合基本不等式“1”的用法求解即可.【詳解】解:因為,所以,當且僅當時,等號成立故函數(shù)的最小值為.故答案為:12、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.13、【解析】根據(jù)向量共線的坐標表示,得到,再由二倍角的正弦公式化簡整理,即可得出結果.【詳解】∵,向量,,∴,∴,∵,∴故答案為:.【點睛】本題主要考查由向量共線求參數(shù),涉及二倍角的正弦公式,熟記向量共線的坐標表示即可,屬于??碱}型.14、【解析】利用扇形的面積求出扇形的半徑,再帶入弧長計算公式即可得出結果.【詳解】解:由于扇形的圓心角為,扇形的面積為,則扇形的面積,解得:,此扇形所含的弧長.故答案為:.15、16、【解析】令,則,所以,故填.16、【解析】由高和側棱求側棱在底面射影長,得底面邊長,從而可求得斜高,可得側面積【詳解】如圖,正四棱錐,是高,是中點,則是斜高,由已知,,則,是正方形,∴,,,側面積側故答案為:【點睛】關鍵點點睛:本題考查求正棱錐的側面積.在正棱錐計算中,解題關鍵是掌握四個直角三角形:如解析中圖中,正棱錐的幾乎所有量在這四個直角三角形中都有反應三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)【解析】(1)利用三角函數(shù)的恒等變換,對函數(shù)的表達式進行化簡,進而可以求出周期;(2)利用正弦函數(shù)對稱軸與對稱中心的性質,可以求出函數(shù)的對稱軸和對稱中心;(3)利用題中給的關系式可以求出和,然后將展開求值即可【詳解】(1).所以函數(shù)的最小正周期.(2)由于,令,,得,故函數(shù)的對稱軸為.令,,得,故函數(shù)的對稱中心為.(3)因為,所以,即,因為,所以,則,,所以.【點睛】本題考查了三角函數(shù)的恒等變換,三角函數(shù)的周期、對稱軸、對稱中心,及利用函數(shù)的關系式求值,屬于中檔題18、(1);(2)【解析】(1)由已知利用誘導公式化簡得到的值,再利用誘導公式化簡為含有的形式,代入即可;(2)由根與系數(shù)的關系求出的值,結合的范圍求出,進一步求出,即可求的值【詳解】解:(1)由得:,即,,;(2),是關于的方程的兩個實根,,解得:,又,,,即,解得:,,.【點睛】關鍵點點睛:解答本題的關鍵是化弦為切.19、(1)(2)或(3)存在,【解析】(1)由題意,將代入可得答案.(2)由題意即關于x的方程在上有且僅有一個實根,設,作出其函數(shù)圖像,數(shù)形結合可得答案.(3)設記,則函數(shù)在上單調遞增,根據(jù)題意若存在實數(shù)m滿足條件,則a,b是方程的兩個不等正根,由二次方程的根的分布的條件可得答案.【小問1詳解】由題意,,所以【小問2詳解】由題意即關于x的方程在上有且僅有一個實根,設,作出函數(shù)在上的圖像(如下圖),,由題意,直線與該圖像有且僅有一個公共點,所以實數(shù)k的取值范圍是或【小問3詳解】記,其中,在定義域上單調遞增,則函數(shù)在上單調遞增,若存在實數(shù)m,使得的值域為,則,即a,b是方程的兩個不等正根,即a,b是的兩個不等正根,所以解得,所以實數(shù)m的取值范圍是.【點睛】思路點睛:函數(shù)的零點問題可轉化為兩個熟悉函數(shù)的圖象的交點問題來處理,而二次方程的零點問題,可結合判別式的正負、特殊點處的函數(shù)值的正負、對稱軸的位置等來處理.20、見解析【解析】平面內取一點,作于點,于點,可證出平面,從而,同理可證,故平面.【詳解】證明:如圖所示,在平面內取一點,作于點,于點.因為平面平面,且交線為,所以平面.因為平面,所以同理可證.又,都在平面內,且,所以平面【點睛】本題主要考查了兩個平面垂直的性質,線面垂直的性質,判定,屬于中檔題.21、(1)(2)(3)詳見解析【解析】(1)因為是按直線上升的房價,設,由表格可知,,進而求解即可;(2)因為是按指數(shù)增長的房價,設,由表格可知,,進而求解即可;(3)由(1)(2)補

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論