2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第1頁
2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第2頁
2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第3頁
2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第4頁
2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆云南省屏邊縣民族中學(xué)數(shù)學(xué)高三第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.2.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.3.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了4.若集合,,則()A. B. C. D.5.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值6.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.7.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍8.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.9.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.10.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.11.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.12.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標為_______.14.已知雙曲線的左右焦點分別關(guān)于兩漸近線對稱點重合,則雙曲線的離心率為_____15.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實部為____________.16.設(shè)函數(shù),則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.18.(12分)設(shè)拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.19.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.20.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.21.(12分)已知橢圓與拋物線有共同的焦點,且離心率為,設(shè)分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(nèi)(含邊界)時,求直線的斜率的取值范圍.22.(10分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.2、B【解析】

作出不等式組對應(yīng)的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.3、C【解析】

假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.4、B【解析】

根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補集關(guān)系的應(yīng)用,屬于中檔題.5、B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.6、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).7、D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.8、D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.9、D【解析】

根據(jù)中點在軸上,設(shè)出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.10、B【解析】

方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得,故選B.11、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、B【解析】由題意可得c=,設(shè)右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

設(shè)出三點的坐標,結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.14、【解析】

雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學(xué)生的計算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運算計算即可得到答案.【詳解】,所以復(fù)數(shù)的實部為2.故答案為:2【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.16、【解析】

由自變量所在定義域范圍,代入對應(yīng)解析式,再由對數(shù)加減法運算法則與對數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因為函數(shù),則因為,則故故答案為:【點睛】本題考查分段函數(shù)求值,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計算能力,屬于中等題.18、(1)2,;(2)證明見解析.【解析】

(1)由題意得的方程為,根據(jù)為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設(shè),的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【點睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.19、(1);(2).【解析】

分析:(1)先根據(jù)絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當時,可得的解集為.(2)等價于.而,且當時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.20、(1)①當時,在上單調(diào)遞減,在上單調(diào)遞增;②當時,在上單調(diào)遞增;(2).【解析】

(1)求出函數(shù)的定義域和導(dǎo)函數(shù),,對討論,得導(dǎo)函數(shù)的正負,得原函數(shù)的單調(diào)性;(2)法一:由得,分別運用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當時,恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論